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Thermal conductance of one dimensional disordered harmonic chains
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We study heat conduction mediated by longitudinal phonons in one dimensional disordered harmonic chains.
Using scaling properties of the phonon density of states and localization in disordered systems, we find non-
trivial scaling of the thermal conductance with the system size. Our findings are corroborated by extensive
numerical analysis. We show that a system with strong disorder, characterized by a ‘heavy-tailed” probability
distribution, and with large impedance mismatch between the bath and the system satisfies Fourier’s law. We
identify a dimensionless scaling parameter, related to the temperature scale and the localization length of the
phonons, through which the thermal conductance for different models of disorder and different temperatures

follows a universal behavior.

Introduction- The study of heat transport via phonons in
low dimensional (spatial dimension d < 3) classical and
quantum mechanical systems has attracted considerable theo-
retical and experimental attention in recent years [1H11]]. One
of the main objectives of these studies is to understand the
scaling of heat flux J which, according to Fourier’s law [4],
should scale with the system size L as J oc L1 (L is mea-
sured along the direction of heat propagation). But exten-
sive numerical and analytical studies in the past few decades
have revealed the possible violation of Fourier’s law for low
dimensional systems [10} [12H16]. These studies show that
J o< LO~Y with 4 # 0 which in turn implies L-dependent

thermal conductivity, x = lim lim <& o L7 (AT be-

. . L—oo AT—0 AT
ing the temperature difference across the system) [4]. The

violation of Fourier’s law in low-dimensional systems is also
observed experimentally in the case of carbon nanotubes [[17]],
nanowires [[18] and graphene [[19].

For systems of finite size, instead of thermal conductivity
K, it is useful to study thermal conductance, G = KLA2,
Thus, for one dimensional systems (d = 1), according to
Fourier’s law, we expect G(L) oc L™, with 8 = 1 for normal
heat transport, while 5 # 1 implies anomalous heat transport.
Note that the scaling exponents v and 3 characterizing the
thermal conductivity and thermal conductance, respectively,
are related by 5 = 1 — . One interesting question is under
what conditions 8 = 1 (or, v = 0)?

Various aspects, such as disorder [12, 20, 21]], phonon-
phonon interaction [22| 23], presence of pinning potential [24]
25]], nature of the heat baths [10] and the coupling between
the system and the heat bath [21]], have been shown to af-
fect heat transport. Particularly, theoretical studies for one
dimensional isotopically (mass) disordered harmonic chains
show that J o< L~ % with free boundary conditions [13]] while
J o< L% with fixed boundary condition [12], implying that 3
can be % or % For this particular model, it was also shown that
normal scaling (i.e. S = 1) can be observed only under spe-
cific choices of the thermal bath [10]. It was also argued, un-
der free boundary conditions, that one-dimensional harmonic
chains with spatially correlated disorder may exhibit normal
heat conduction asymptotically [20].
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FIG. 1. Schematic illustration of one dimensional disordered har-
monic chain. Full and empty circles correspond to the bath and sys-
tem particles, respectively. All particles and springs in the heat baths
are identical, with mass m and spring constant k. Particles in the
system all have mass M, and particles 7 and (¢ + 1) are connected by
a springs with stiffness ;. The masses at the two ends of the disor-
dered chain, ¢ = 1 and ¢ = [N, are connected to heat baths through a
spring of strength k.

Can one have normal heat transport in one dimensional
disordered (uncorrelated) harmonic chains even within free
boundary condition? A recent theoretical study [21] predicts
that for a weakly coupled disordered harmonic chain one may
observe normal heat transport in the presence of strong disor-
der, when disorder is characterized by a heavy-tailed distribu-
tion. While it is important to verify this theoretical prediction,
it is equally interesting to ask: How does thermal conductance
scale with L if the coupling between the system and the heat
bath is not weak? For a given coupling, how does 3 depend
on the nature of the disorder? In this Letter, we address these
questions by studying, analytically as well as numerically, the
scaling of thermal conductance in one dimensional disordered
harmonic chains for different types of disorder and coupling
between the system and the heat bath.

Heat conduction by phonons is similar to electrical conduc-
tion, but with a crucial difference: the presence of a local-
ization threshold at zero frequency. This leads to a diverging
localization length, &(w), for w — 0 [26} 27] and has strong
consequences on the scaling of thermal conductance. Specif-
ically, for a given L and disorder strength, one can define a
cut-off frequency wy, for which £(wy) = L. All phonons
with w < wy, are effectively delocalized, i.e. £(w) > L, and
contribute to the heat transport.

Model & background.- We consider a one dimensional dis-
ordered system consisting of IV particles, each of mass M,
connected by harmonic springs with spring constants K;(i =
1,2,--+ N — 1), chosen randomly from a given distribution,
cf. Fig.[I] K; is the spring constant of the spring connecting
particles ¢ and ¢ + 1 in the disordered chain. The two ends



(i = 1and i = N) of the chain of length L are coupled to
two heat baths at temperatures 77 (left bath) and Th(< Ti;
right bath), respectively. Here, L = (N — 1)rq with ro be-
ing the average interparticle distance. Heat baths are modeled
as ordered harmonic chains consisting of an infinite number
of equal masses (m), and connected by identical springs (k).
The system is coupled to two heat baths via two springs each
having spring constant k. If k is much smaller (larger) com-
pared to the typical spring constant in the disordered chain,
we refer to the system as weakly (strongly) coupled to the
reservoir. Note that our setup corresponds to the case of ‘free
boundary condition’ considered in the literature [10.[13]]. Be-
low we work in units where the mass M of the system’s par-
ticles, the natural frequency of the bath wg = /k/m, and
Boltzmann’s constant are all set to unity. We express the stiff-
ness of the springs in units of Mw3 = 1.

In the current study, we consider two models of disorder:
(1) Uniform distribution: K; = (1 + R;) where R; follows
a uniform distribution of width W, i.e., R; € [-W/2, W/2].
Large values of W correspond to stronger disorder and W =
2 is the strongest possible disorder strength. (2) Power-law
distribution: K; follow a power-law probability distribution,
P(K) o< K7, where 0 < K < 1 and disorder strength is
quantified by the dimensionless parameter ¢(> 0) [28]. This
situation arises naturally if K decays exponentially with inter-
particle separation which follows a Poisson process [29, 30].
Small (< 1) corresponds to strong disorder.

As noted above, transport is mediated by effectively delo-
calized low-frequency phonons. Thus, it will be crucial to un-
derstand the scaling behavior of the localization length, £ (w)
and density of states (DOS), p(w), in the limit w — 0. Here,
we briefly summarize earlier theoretical predictions related
to these scaling behaviors. With uniform disorder, p(w) ap-
proaches a constant (equivalent to the Debye scaling for 1D
ordered systems [31]]) while &(w) o w2 [26} 27,30, 32, 33].
These results were predicted for weak disorder, but we will
show that these hold for any value of W. With power law
disorder, we define three qualitatively different regimes: in
the weak disorder regime (¢ > 2), p and £ have the same
scaling behavior as that of the uniform disorder; In the inter-
mediate disorder regime (1 < e < 2), where the variance of
the compressibility diverges (but its mean does not), the lo-
calization length has a non-trivial scaling {(w) o w™¢, but
the DOS still exhibits Debye scaling, and in the strong disor-
der regime (¢ < 1), the mean of the system’s compressibility
diverges, and both p and £ feature anomalous scaling [33]]:
plw) =3 ¢(w) x w771, These results, which are cru-
cial for the discussion below, are summarized in Table [I| and
numerically demonstrated in Fig. 2J(a-b) and Fig.

Analytical results - To study the heat transport we follow
the Landauer scattering approach in which propagation of a
phonon of given frequency w through the disordered chain is
characterized by a transmission coefficient, 7(w). For a one
dimensional system the thermal conductance G(L, T') is [34]:

[T dw  Ofr(w)
G(L,T)N/O el

where fr is the Bose-Einstein distribution function and we

T(w) . (1)

5 _ €'
1.6 wils 5=—02 N _&
Y s = —0.

3 (a) Uniform —00 | § 10
< —02 ‘ \-M —15
—0.6 - 4 3 9 . .5

0.8 . F

—14

(b) Power law

0 06 o 18 24 0 05 o 1 L5 2
—k =1.0—Fk = 0.50 —k = 0.10 —k = 0.0l —k = 100.0
\ L

0 0.2 0.4 0.6 08 w1 12 1.4 1.6 1.8

FIG. 2. (Color online) Density of states, p(w), as a function of
phonon frequency w for different disorder strengths for a one dimen-
sional harmonic chain with (a) uniform disorder and (b) power-law
disorder and N = 2000. (a) For W = 0, p(w) diverges when w — 2
(a van-Hove singularity) and vanishes for w > 2. Presence of dis-
order (W > 0) smears out the divergence at w = 2 and gives rise
to finite p(w) for w > 2. For w — 0, p(w) approaches a constant
for all disorder strengths. (b) For power-law disorder, p(w) diverges
at w — 0 in the strong disorder regime and approaches a constant
in the intermediate and weak regimes (inset). (c) The transmission
coefficient 7(w) for various coupling strengths (k) and a given re-
alization of disorder. For this example, we consider a chain with
uniform disorder (W = 0.5) and N = 11. For k = 1.0 (red line),
transmission is roughly constant up to a cutoff frequency wy,, For
k < 1ork > 1,7 also vanishes for w > wy,, but is sharply peaked
around the eigenfrequencies of the disordered chain for w < wr..

alsoassume AT =T - T < T = %

Note that the system features two competing frequency
scales: the disorder-related w; and the thermal frequency
wr = T/h. Phonons with w > wy, do not contribute to con-
ductance because they are localized. Phonons with w > wr
do not contribute because they are not populated. Therefore,
the integral in Eq. (1) is better represented in terms of the non-
dimensional frequency © = w/wr,

o] 2 .x
G(L,T):?’gqm/o dxﬁﬂxo@). )
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Here g,m = m2T/(3h) is the quantum of thermal conduc-
tance [34] 35] which is the universal value of G(L,T) in the
limit 7" — 0. To see this, note that 7(w) — 1 forw — 0 due to
the existence of a Goldstone mode, related to the translational
invariance of the system. Using this fact, it is straightforward
to show that for a given L Eq. (2) yields G(L,T) — gqm for
very small T (wyr < wr,), regardless of any other property of
T(w). ggm is thus the natural unit of conductance for our sys-
tem and below we express all results in these units by defining
Gym(L,T) = G(L,T)/ggm.

Of course, the limit of L — oo and finite 7" is of more
interest, but an exact evaluation of the integral in the general
case is not feasible. Nonetheless, much insight can still be
gained in some interesting cases.
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TABLE I. Summary of the scaling behavior for thermal conduc-
tance, G (from this work), density of states (DOS), p and localiza-
tion length, & (from ref [33]) under different impedance mismatch
(coupling k) and disorder strengths.

We first consider the situation where the stiffness of the
coupling spring k is comparable to that of the chain, i.e. k ~
1 [36]. In this case there is relatively little impedance mis-
match between the chain and the bath, implying less re-
flectance of the incident phonons from the bath-system bound-
ary. In this situation, phonons get transmitted even when
their frequency is not close to an eigenfrequency of the chain.
Therefore, from a scaling perspective we can approximate that
7(w) = 1 for all phonons with w < wy, and zero otherwise. A
numerical calculation of 7(w), shown in Fig. , demonstrates
that this approximation is crude but reasonable. As shown be-
low, it quantitatively captures the scaling behavior.

With this approximation, Eq. (T) depends only on the di-
mensionless combination wr, /wy (which is the upper inte-
gration limit) implying that thermal conductance for k ~ 1
should follow a universal curve, independent of temperature
and disorder, when expressed in terms of wy, /wr. In fact the
integral can be carried out in closed form, and for large L (or
large T .i.e., wr > wy) it reads

3 [w wr \ 2
qu(L,T)%(L>+O<L> . 3)

s 2 wT wT

In order to get the explicit dependence on system size in
this limit, we use the known scaling &(w) oc w™, see [21]
and Fig.[3] Straightforward manipulation shows that this im-
plies Gy o< L™aT~1, thatis, 5 = o' in this limit of
small impedance mismatch and large L. Also, for a given L,
G(T) « T for small T and G(T') ~ constant (saturates) for
high T [37].

For uniform disorder, theory predicts &« = 2 implying
G(L) o L~'2, in accord with previously reported re-
sults for mass-disordered chain under free boundary condi-
tion [[10, [13]]. For power-law disorder, as o depends on disor-
der strength €, 3 also depends on e with G oc L~1/2 L~1/¢
and =% in the weak, intermediate and strong disorder
regimes, respectively. These results are summarized in Ta-
ble.[l

This concludes the case of k ~ 1, where transmission is
approximately constant for all w below a certain cutoff. How
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FIG. 3. (Color online) The dependence of localization length, &(w),
on the frequency w of the phonons for different strengths of disorder
(y-axis in log scale) for (a) uniform disorder and (b) power-law dis-
order. For small frequencies (w — 0), &(w) diverges as w™“ where
« depends on disorder strength. (a) For uniform disorder, « = 2
in weak as well as strong disorder regimes. (b) For power-law dis-
order, @ = 2 for weak disorder (¢ > 2) while for intermediate
disorder (1 < € < 2),a &~ € and in the strong disorder regime

(e<1),a~ lafe (inset).

does the picture change in the case of strong impedance mis-
match, £ > 1 or k < 1? In this case transmission is
negligible for almost all frequencies, except those which are
close to an eigenfrequency of the disordered chain. In previ-
ous work [21]], it was shown that in the weak coupling limit,
k < 1, 7 has a structure of non-overlapping Lorentzians for
phonons with w < wr, cf. Fig. 2. Each Lorentzian is cen-
tered around an eigenfrequency of the disordered chain and
the area of each Lorentzian, i.e. it’s integrated contribution to
the thermal conductance, was shown to be w-independent for
the delocalized modes [21]]. Calculating the integral in gen-
eral for any wy, /wr is difficult, but if we are only interested in
the scaling behavior for large L, the integral essentially counts
the number of eigenmodes of the disordered chain within the
frequency range 0 < w < wy, [38]:

wr
GL)y=% [ dwplw), C)
0

where X is the area of each Lorentzian. Considering p(w) =
Dw? (see [21] and Fig. Eh-b), where D depends on disorder,

for large L we get

Goxwitloc L™ (5)

Thus, in the weak coupling regime G, LT for
a fixed 7T'. For uniform disorder, as well as power-law disorder
with € > 1 (i.e. the weak and intermediate regimes), we have
s = 0 and thus the scaling of thermal conductance with L
remains the same as in case of an impedance-matched bath
k =~ 1. Interestingly, for strong disorder, ¢ < 1, we have s =
<1 and v = £, which together cancel out exactly to yield
normal Fourier-like heat conduction 3 = 1. Also, note that,
when expressed in terms of wf’l /wr, thermal conductance
should follow a universal curve in the weak coupling regime
and the large L limit.

Lastly, we deal with the case of very large k, i.e. the strong
coupling regime. A careful analysis, presented fully in the
supplementary material [37]], shows that this limit is equiva-
lent to a system with the first and last particles excluded, i.e.,
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FIG. 4. (Color online) Dependence of the thermal conductance

Gqm(L) on the length L of the disordered chain for uniform (dis-
order strength W) and power-law (disorder strength €) disorder in a
log-log plot with (a) k = 1.0 and (b) K = 0.01. The mean temper-
ature is fixed at ' = 0.10. For k = 1.0, Gqm (L) ~ 1 for very
small L, while Gy, (L) o< L™? for large L. § # 1 (anomalous
scaling) for £ = 1.0 except for e = 1. For £ = 0.01, 8 = 1.0 in the
strong disorder regime (¢ < 1.0) while in all other cases Ggm (L)
scales anomalously. Unified description of thermal conductance for
one dimensional disordered harmonic chains with different models
of disorder in terms of the variable (¢) wr, /wr (for k& = 1.0) and
(d) wit! Jwr (for k = 0.01). Here, Gym = % (see text for
details).

effectively a system of (/N —2) particles. Therefore, like in the
case of weak coupling, 7(w) is composed of non-overlapping
peaks with an w-independent area, cf. Fig. 2| Since the den-
sity of states and the localization length are independent of
the coupling k, all our predictions for £ < 1 hold also for
k > 1. That is, the same scaling exponents emerge in the
case of strong impedance mismatch, regardless of whether k
is very small or very large. All our theoretical predictions for
different disorder types and coupling strengths are summa-
rized in Table.[ll

Numerical results.- We test our theoretical predictions by
numerically computing thermal conductance and other prop-
erties, such as density of states and localization lengths, for all
cases considered above. The density of states, p(w), for differ-
ent disorder strengths is shown in Fig. [2(a-b) for the uniform
and power-law disorder, respectively, with N = 2000 [37].
For uniform disorder, p(w) approaches a constant as w — 0,
that is, s = 0. For power law disorder, p(w) diverges with an
exponent consistent with the theoretical prediction, s = Zi
For weak and intermediate disorder theory predicts s = 0 but
a weak divergence is observed for € = 1, the origin of which
in not clear to us at present.

4

To calculate G, we compute 7(w) directly for different k
and disorder types using a transfer matrix method [37]. For a
single realization of the disorder, the dependence of 7(w) on
k is shown in Fig.[2fc) (with W = 0.50 and N = 11).

For a given disorder and a fixed w, we find that 7(w) de-
cays exponentially with L [37]. This defines a length scale
which we interpret as the localization length £, i.e., 7(w, L)
exp[—L/&(w)] [37]. We find that ¢ diverges like £(w) o< w™?,
consistent with theoretical predictions (see Fig. [3).

Finally, we compute G for different L, T', disorder types
and coupling strengths, using Eq. (I). This is presented in
Fig.[d{a) (for k = 1.0) and[@{b) (for k£ = 0.01), which shows
that the numerical results for all cases agree with the theoreti-
cal predictions (for k& = 100, see supplemental material [37]).
Heat transport is anomalous (3 # 1) for all cases except for
the power-law disorder in the weak/strong coupling regime
and also when ¢ = 1 (FigEkb)). In addition, panels (c) and
(d) demonstrate that when expressed in terms of wy, /wy (for
k = 1) and wi“ Jwr (for k = 0.01), respectively, all data
collapse on a single curve, following Eq. (3) and Eq. ().

Conclusions and discussion.- In this Letter we studied an-
alytically the thermal conductance of one-dimensional disor-
dered harmonic chains and corroborated the theoretical pre-
dictions with extensive numerical simulations. We found a
non-trivial scaling behavior of the conductance, which de-
pends both on the nature of disorder and the coupling between
the system and the heat baths. This dependence is mediated
by the scaling of the localization length and density of states.
In addition, we identified the dimensionless scaling parameter
with which one has a unified description for all temperatures
and systems sizes.

Specifically, we found that the conductance features
anomalous scaling with L for uniform disorder and for weak
and intermediate power-law disorder (i.e. with a well-defined
mean). Interestingly, for strong power-law disorder and strong
impedance mismatch, K < 1 or £ > 1, normal scaling
G o« L~!is observed. For strong disorder and low impedance
mismatch, i.e. k =~ 1, the scaling exponent 3 can be greater
than unity. While most of the previous works on anomalous
heat transport focused on the classical regime, our study en-
compasses both, quantum and classical regimes. It would be
interesting to study in the future the fluctuations in the thermal
conductance, and in particular ask if the universal fluctuations
observed in electronic systems have a counterpart here.
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SUPPLEMENTAL MATERIAL FOR ‘THERMAL CONDUCTANCE FOR ONE DIMENSIONAL DISORDERED HARMONIC

CHAINS’

I. ANALYTICAL PREDICTION OF THE TRANSMISSION COEFFICIENT IN THE REGIME OF STRONG IMPEDANCE

MISMATCH

The model of a one dimensional disordered chain with N particles coupled to two heat baths at the two ends is shown in Fig. 1
of the main article. u,, denotes the displacement of the n-th particle in the disordered chain from its equilibrium position. The

equation of motion of the n-th particle is

d?u,,
dt?

= Kn(un+1 - un) - anl(un - unfl)

Considering u,, = x,, exp[—iwt] (i.e. looking at normal mode solution) in Eq. (S:I)), we get

—Muw?z,

= _anl(xn - xnfl) + Kn(-rnJrl - xn)

S.1)

(S.2)

Note that Ky = k, and Ky = k. We can write the above set of equations in a compact form using the following matrix notation:

[—k — K, K 0 0 0
K, —Ki — K> Ky 0 0
10 ---0 T1 0 K5 —Ky — K;5 K3 0
0O1---0 To 0 0 K3 *K37K4... 0
Muw? . + .
00 1l Len 0 0 0 b Koo — Kn_i
0 0 0 : Kn_1
—k‘$0 b1
0 bo
0 by—1
—krni1 by

o, (Mw’I+ A)|X)=|B)

or, |X) = (Mw?T+ A)”" |B),

where, [ is a unit matrix of order IV x IV, and A is a tri-diagonal matrix of order N x N with 4; ; =

and Ai,i—l = Ki—1~ AISO,

OO OO

Kn_q
—Kn_1—-k

elements; by = —kxg and by = —kx 1. We are using the quantum-mechanical bra-ket notation for convenience.

As the normalized eigenvectors {|V;)}, corresponding to the eigenvalues {\;}(i = 1,2,---

we can expand the right hand side of Eq. (S.3) in terms of {|V;)} and write the Eq. (S.3) as

X) =3 s VB

240\

€1
X2
z3
Ty

ITN-1

L TN

(S.3)

-Kio1—Ki,Aiiy1 =K,
X) and |B) are column vectors and all components of |B) are zero except for the first and last

, ) of A form a complete basis,

(S.4)

Whenever there is strong impedance mismatch between the bath and the system (which occurs in case of weak and strong
coupling), transmission is appreciable only for frequencies close to the eigenfrequencies of A. In this case the sum in Eq. (S.4)

is dominated by a small number of summands.

An eigenmode can have a non negligible contribution to the sum of Eq. (S-4) in one of two cases: either

(a) it is close to resonance, i.e. the denominator Mw? + \; is small, or

(b) the projection of the eigenmode on the chain ends, (V;|B) is large.

As was shown in ref. [21]], in the case of very weak coupling (k < 1) only case (a) occurs and near an eigenfrequency of the

chain Eq. (S.4) is well approximated by

L vawis)

X))~ —
X~ 5

(S.5)



where, 0\, = M(w? — w?) as \; = —Mw?. Using Eq. (S.3), one can derive an expression for transmission coefficient as
described in ref. [21]], which is valid for weak coupling.

The case of very large coupling (k > 1) requires more care as both options (a) and (b) occur. In addition to resonant modes,
the strong springs in the ends of the chains give rise to two special modes, each localized in one of the ends of the chain. These
modes’ contribution to the sum of Eq. (S.4) is not negligible for any frequency (with respect to the contributions from other
modes).

To see this, let us order the eigenvalues of A in ascending order of their magnitude: \; < Ao < -+- < Ay < -+ < Ay_1 < ApN.
In Sec. [l we show, within a rigorous degenerate perturbation theory, that for k > 1 these two special modes are |[Vy_1) =
[100 - 0] and |Vy) ~ [000 --- 1]7, and their associated eigenvalues are Ay _1 ~ Ax ~ —k. All other eigenvalues are
much smaller.

Thus, in the strong coupling limit, instead of Eq. (S.3), we have

1 1
X) % 55 VIViIB) + 5

1
Y VN-1)(VNn-1|B) + m\VN><VN|B>- (S.6)

Writing w; = @ and d\; = I A, thus, the displacements x; and xy are given by

*kl’o?}% — kxN41010N k —kxguivny — kxN_HUJQV k
_ ~ — S.7
i 6)\N,1IO , TN 3 6>\N£Z?N+1 , (8.7

T =

where, v; = (j|v) is the amplitude of the eigenmode & at site j. Assuming that a phonon of frequency w (with unit amplitude)
and wave number ¢ coming from the left side of the disordered chain, we have x,, = e"X + re=™X(n < 1) and z,,, =
te?™X(m > N), where r and ¢ represent the reflection and transmission amplitudes and x = ga, a being the lattice constant in
the ordered region. Using phonon dispersion relation [31]], we have

2

x =cos~ ! (1 d ) . (8.8)

T 5 2
2wg

Note that xy+1 = ¢ and kg = 1 4 r. Substituting these expressions for o and z 41 in Eq. (S.7) and using Eq. (S-2), we can
find the transmission amplitude. In order to simplify the algebra, we assume Ay = Ay_1 =~ —k, so that 6\y = M w? + Ay =
0\ n_1. With this, we get the following expression for transmission amplitude:

L k3viondrge X (e?x — 1) 5.9
(e — 2)kdAN + dAnmw? — k2] [(eX — 2)kSANSA — k2 (0N + SAN (v2 + v3;) + SANOAmw?]’ '

For large NN, as only low frequency modes contribute to the transmission coefficient x < 1 leading to x = qa ~ w,/*%'. For
very small y, the transmission coefficient takes the following form

RERVEIN 4k2 (v1on )2 20Ny
[X20M% + (k4 0N — AnX?)?] [6A§V6)\2><2 + {k (60X + AN (V2 +v%)) — SIANIA (X2 — 1)}2}
2 2.2
_ 4k*(vivn )X - (S.10)
X+ GGE-+1- X2)2} [(WX? + {k (5% + (02 + v}’v)) — A2 — 1)} ]
As w is very small and \y =~ —k, we can write
ko k N i ~—1
AN AN+ Mw? T Ay
Using this, we have
i 2
2 — 4+ 1—?) ~y? 11
x+<5AN+ x) X (S.11)

A 2
NN+ {k (cSAN +(vF + v?v>) = A - 1)} R (0N —8)* 4+ 5°(1— ), (S.12)
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FIG. S.1. Transmission coefficient 7(w) for an arbitrarily chosen frequency range for a one dimensional disordered chain with N = 11, W =
0.5 (uniform disorder), and k& = 100, depicting that 7(w) is a Lorentzian in terms of w. The thick dots represent the numerical data which
are same as in Fig. 2c of the main article. The area and width of the Lorentzian agree well with the theoretical predictions (see Eq. (S:I3) and
Eq. (S:16) in this supplemental material).

where, s = k(v% + ’UJQV) Using above simplifications, finally, we can write
4k2 (7)1 UN)2
\2 [(5)\ — )24 %}
4k (vion)? /X

- [(5)\—8)24- ;ig}

T

(S.13)

We define a frequency @ such that 6\ — s = M (w? — ©?). As transmission is appreciable for frequencies close to the
eigenfrequencies of the chain, we have w ~ & ~ @ and consequently 6\ — s ~ 2M©(w — ). Substituting this into Eq. (S:13)
shows that the transmission coefficient is approximately a Lorentzian in terms of w :

4k (v1on)? /X2 Y

SIS

s T rw—2+ (22 (S.14)
(G op 3] T
where the area () and width (o) are given by

2m(vivn )2k 21 (vyvn)?k i
= o (v? 2 = ™~2( 0,2 2 ) (SlS)

Ma(? +v%)xy  Ma2(v? +0%) V m

2, .2 5 o

o= k(vi + vx) _ k(vi + v%) E 516

My M2 m

For large k, we compute v; and vy using perturbation theory and interestingly, find (see sec. [l)) that for the low-frequency
delocalized modes |v1| =~ |vy]| ~ ﬁ and subsequently y ~ %, i.e., for the delocalized modes area associated with
each Lorentzian is independent of the frequency. Thus, their contribution to the thermal conductance is constant, i.e., independent
of the frequency.

We also note that the equations for v and o for large k are slightly different from those obtained for small k(< 1) where the
area () and the width (o) of each Lorentzian are given by (see eq. 15 in ref. [21]):

_ 2m(vivn )2k x _ 2m(vivn)? VEm
Mo(w?+v%)  M®vi+vd) ’
_ kx(vi +0%) (0 +0R)

0y = Vi = i vkm.

Vs (8.17)

(S.18)



For small k, x appears in the numerator of the expressions for the area and the width. In the weak coupling scenario |v;| =
lon| = \/% for the delocalized modes and thus one finds v, = Q”T V]’f[m [21], i.e., the area of each Lorentzian associated with the

delocalized modes are independent of the frequency.

To verify that 7(w) is indeed Lorentzian in w with area and width given by Eq. (S.15) and Eq. (S.16)) for large &, we fit the
numerical data for 7(w) (see Fig. 2¢ in the main article) with a Lorentzian given in Eq. (S.14). As shown in Fig. we find that
the area and the width given by Eq. (S.15) and Eq. (S.16), respectively, agree well with those obtained by fitting the numerical
data.

II. CHARACTERISTICS OF THE EIGENMODES AND THE EIGENFREQUENCIES OF A IN THE STRONG COUPLING
LIMIT

In Sec. [lwe used two properties of the eigenmodes in the k& >> 1 limit:

e There are two boundary modes (that is, eigenmodes localized at one of the ends of the system) with eigenvalue ~ k that
does not scale with V.

e For eigenmodes with w — 0 the vibration amplitude of the first and last particles is proportional to w.

The former was used to approximate Eq. (S.6) from Eq. (S4). The latter was used to show that the contribution of each
delocalized mode to the condactuance is w-independent in the w — 0 limit, Eq. (S.16). Here we derive both results within first
order degenerate perturbation theory.

To set the ground, we write A as:

[—k — K3 K 0 0 0 0 0 T
K K1 — Ko Ko 0 0 ... 0 0
0 Ko —Ky— K3 Ks 0 ... 0 0
A: 0 0 K3 —Kg—K4 K4 0 0 :Ab+Ad’ (819)
0 0 0 0 0 —Kn_2—Kn_1 Kn_1
L 0 0 0 0 0 Ky —Ky_1— k]
where,
—k O .- .. 07
0 0 O 0
0 0 O 0
A— |0 0 0 0
0 0 O 0
L0 0 O —k]
[—K, K; 0 0 0 0 0 7
Ky —-Ki—K» K, 0 0 0 0
0 K, —K> — K3 K3 0 0 0
Ad — 0 0 K3 7K3 — K4 K4 0 O
0 0 0 0 0 - —Kny_o—Kn_1 Kn—1
L o 0 0 0 0 - Kn_1 —Kn_1]

In the strong coupling limit (k > 1) as the typical value of K is much smaller than k, we consider A% as a perturbation and
compute the first order correction to the eigenvalues and eigenvectors of the unperturbed matrix A®. We see that A has two
eigenspaces (“degenerate bands”): The first consists of two modes, [1) = [100 --- 0]T and |[N) =[000 --- 1]T, localized at
the first and last particle, respectively. Both have eigenvalue —k. The second eigenspace consists of (N — 2) modes with w = 0.
This eigenspace consists of all vibrations that keep the first and the last particles fixed.

First, we can already conclude that the two boundary modes with eigenvalue ~ —k indeed exist. To zeroth order their
eigenvalue is exactly —k and they are entirely localized at the first and last particles. Any corrections to this picture become
smaller as k increases and thus the perturbation becomes smaller.
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2 0.04F (a) W =1.95k =100, N = 2000 (b) W =1.95,k = 0.01, N = 2000
>
<
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Particle index (7) Particle index ()

FIG. S.2.  Eigenvectors associated with the lowest four eigenfrequencies (j = 1,2,3, and 4) of the matrix A ( see Eq. (S19) ) with
N = 2000, W = 0.5 and (a) k = 100 (strong coupling) and (b) k¥ = 0.01 (weak coupling). In the figure, v} represents vibration amplitude
of particle ¢ in the eigenmode j. The nature of the eigenvectors at the boundary (v{ and va) are different for & = 100 and k£ = 0.01. For
k = 100, [v]], |’ | — 0 for the low-frequency (w — 0) eigenmodes.

We turn to analyze the modes in the (N — 2)-fold degenerate band. Here the zeroth order picture is trivial and we need the
first order correction in order to see the structure. Degenerate perturbation theory [39] tells us that the relevant eigenmodes of
the perturbed system are those which diagonalize the perturbation when projected to the degenerate eigenspace. In our case, we
need to find the eigenmodes of the matrix that is obtained by deleting the first and last row and column from A%, namely

—Kq, — Ky Ky 0 0o --- 0 0 T
Ky —Ky — K3 Ks o --- 0 0
i 0 K —K3— K4 Ky - : 1 (S.20)
0 0 _KN—S_KNfz KN72
i 0 0 Cee e KN—2 —KN—2_KN—1-

This matrix describes a chain of N — 2 particles, connected to two fixed particles at ¢ = 1 and ¢ = N with the springs K; and
K n_; respectively. The eigenmodes of this matrix, \Véo)% when padded with zeros at both ends to make them /N-dimensional,
are also eigenmodes of A, to zeroth order. Note that A is identical to A of Eq. (S:19), with the difference that it involves N — 2
particles instead of NV, and that the first and last springs are K7 and K _; instead of k.

Our goal is to understand how (1|V,,) and (N|V,,) scale with N and w. In the present context, degenerate perturbation
theory [39] tells us that

(] at[i?)

)\%0) _ )\EO)

<1 ‘ V;.(O)> (S.21)

0v)~5

where the summation is performed only on |V;) outside the degenerate eigenspace of |V,,). In our case there are exactly two
modes outside the degenerate subspace — the boundary modes |1) and | N') — and consequently the amplitude of the first particle
of the n-th eigenmode |V4,) is, to first order,

(1] ar]w”)

K (0)
e T<2‘VN > . (5.22)

(1] V) ~ <1‘V,§1)> -

That is, to first order, the vibration amplitude of the first particle is proportional to the zeroth order vibration amplitude of the
second particle.

In an ordered chain, when all K; are equal,

VTEO)> is a sinusoidal mode which vanishes ati = 1 andi = N,

1 1—1
(VY Wi sin (mrN — 1) , (S.23)



11

x1074 (a) (b)
1} 105]
W = 0.5,k = 100 1 s W = 0.5,k = 100
N = M 0.5log N — 8.3
— 06| = o Joi ,~0.5log N —8.
= 1150 = |uy]
0.4} 1S
0.2 12y
w = 0.0250(0.0005)
0l - - - - 1250 - - -
0 005 01 015 02 025 5 6 8
w log(N)

FIG. S.3. (a) Dependence of the magnitude of the amplitudes v, and v at sites 1 and IV, respectively, on the eigenfrequency w for a fixed
N. Here, we consider a weakly disordered chain (uniform disorder) with N = 2000, W = 0.5 and k£ = 100. Results are averaged over 50
independent realizations of disorder. Different points represent the numerical data while the solid line represents a linear fit to the data for v;.
For a given N, both |v1| and |vn| increase linearly with w for low frequencies. (b) For a fixed frequency w, dependence of |v1| and |vn| on
the system size N. For a given low frequency mode (w = 0.025 + 0.0005), |v1|(Jun]|) ~ ﬁ Here, we consider 50 independent realizations

of disorder and all the modes having frequencies w % 0.0005. Also, W = 0.5 and k£ = 100, as in panel (a).

Therefore, for large N we have (2|V,,) o« n and since for small w dispersion is linear, n is proportional to w. Combining this
with Eq. (S22)), we get

(1| V;)| =~ ‘<1 ‘ V,El)>‘ ~ ﬁ (to first order), (S.24)

as utilized after Eq. (S.16). An identical argument shows that the vibration amplitude (N|V,,) of the last particle follows the
same scaling.

Lastly, we argue that Eq. holds for disordered chains as the low-frequency modes are effectively delocalized and
follow approximately the same dispersion relation as the ordered chain. This is demonstrated in Fig. [S.2[a) where we plot the
eigenvectors associated with the lowest four eigenfrequencies of a disordered chain with N = 2000, W = 1.95 and k£ = 100.
Panel (a) shows that the eigenmodes indeed correspond approximately to those of an ordered chain with fixed boundaries. We
also verify that the scaling of |v;| and |vy]| with w and N follow Egq. as shown in Fig.[S.3(a-b). Note that the linear w
dependence of |v1| and |vx| holds only for the low-frequency modes and fails for w > wy, as the high frequency modes get
strongly affected by disorder and become localized (i.e., does not follow the dispersion relation of an ordered harmonic chain).

It is interesting to note that the scaling relation (S.24)), which holds for k& > 1, is very different from what one would have
in case of the weak coupling (k < 1). In that case the roles of A® and A¢ in Eq. (S.19) are interchanged since A® is much
smaller and is treated as a perturbation to Ad.NNote that A% describes to a chain whose end particles are free (i.e., not connected
to “external” springs like K7 and K_; in A), as can be seen from the fact that all rows and columns sum to zero. That is, a
global uniform translation is an eigenmode (actually, a Goldstone mode) of the system. In this scenario the modes do not vanish
at the boundary but rather their gradient does. This is demonstrated in Fig. [S.2]b), showing eigenmodes of the same disordered
chain as in Fig.[S.2[a) but with & = 0.01.

Lastly, we clarify that these notions of “free” and “fixed” boundary conditions are distinct from the way these notions are
used in the literature [4}[10}[12}[13]]. In their jargon our system always has free boundary conditions, irrespective of the coupling
strength, since the two end particles of the disordered chain are not pinned, i.e., these particles are not connected to some external
springs other than the ones that couple the system with the heat baths. We only use the notions of “free” and “fixed” boundary
conditions in the context of the eigenmode behavior near the boundaries under weak and strong coupling, respectively.

III. DENSITY OF STATES

The density of states (DOS), p(w), gives the number of states per unit frequency interval at the frequency w. It is defined as

p(w) = <§] > d(wg — w)> : (S.25)

where N is the number of particles in the disordered chain and () indicates averaging with respect to the independent realizations
of the disorder. Thus, we have [ dwp(w) = 1. We compute p(w) for the isolated disordered chain by constructing the histogram
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of the frequencies w(= ﬁ) obtained by diagonalizing the following N x N matrix:

K, -K; 0 0
—-Ky Ki+ K, —K 0
H = 0 —-K2 Ky+ Kz --- 0 (S5.26)
0 ce e —Knoy
0 0 T

where A are the eigenvalues of H. For an ordered chain, we know [31]]

2
plw) = — o (S.27)

2 _ 2’
T/ W2, —w

where w,,, = 2wy is the maximum allowed frequency for the phonons, and wy is the natural frequency of an ordered chain. Thus,
for an ordered chain p(w) diverges as w — wy,, as discussed in the main text and consequently p(w) = 0 for w > 2wg. The
divergence of density of states at w = wy,, for the ordered chain (W = 0) corresponds to the van-Hove singularity [31].

IV. DETAILS OF THE TRANSFER MATRIX METHOD TO COMPUTE TRANSMISSION COEFFICIENT, 7(w)

To compute the transmission coefficient 7(w) for a phonon of frequency of w as it passes through the disordered chain of
length L, we construct the transfer matrix for the disordered chain as described below. We can recast Eq. (S.2) in the following

matrix form:
2
Tpt1 _ Kn—‘,-K"I}:L—mnw *Kfé:ll Tn
L 1 0 Tn—1

Tn
=M, <In_1) , (S.28)
where, m,, = M for (n = 1,2,--- , N) and m,, = m otherwise. We can relate the two ends of the disordered chain using the

matrix M, iteratively, and thus we have

TN+2 pha Zo
(zN+1) =[] Ma (x_l) (S.29)

n=0

Eq. (5.29) relates the amplitudes of the waves on the two sides (i.e. in the ordered region) of the disordered chain. In the ordered
region, we can express the amplitude of the displacement at any lattice site as the superposition of plane waves. For example, in
the region n > N, for phonons with wave number ¢, we can write:

T, = AeX" 4 Be X" (S.30)

where, A and B are two constants. The left hand side of Eq. (S:29) can be written as
rn+2) [ 1 1 Aeix(N+2)
Tny1)  \e™X X | \ Bemix(N+2)
Aeix(N+2)
o wen) (31
Now, multiplying both sides of Eq. (S:29) by Q! from the left, we get
x pas x
-1 N+2 -1 -1 0
= MT
Q <xN+1> Q lljo ] QQ (1,_1)
_ 7 ( @0 ) (S.32)

Z—1

where,

_ 1 1
Q! ( e 1) (5.33)

9 siny \—¢€
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FIG. S.4. Dependence of In7(w) on the system size (L) of the uniformly disordered chain (model 1) for different strength of disorder
W at a given frequency w: (a) w = 0.5 and (b) w = 0.8. Thick dots represent the actual data while the solid lines are the liner fit
[In7(w) = —L/&(w)] to the respective numerical data. For a given value of W, In 7(w) decays linearly with L for any w and the slope of the
curve gives the localization length &£(w). Results are averaged over 200 independent realizations of disorder.

and we have introduced the transfer matrix 7'V), connecting the waves on two sides of the disordered chain, as

N+1
TN = Q! [H Mn] Q (S.34)
n=0
Thus, from Eq. (S.32), we have
XN — N1\ _ () [ €XT0 —Tq
(‘e_ixxsz + $N+1> =7 —e Xpo g (8.35)

We can simplify Eq. (S:35) further by considering the following situation. Let us assume a phonon with wave number by ¢
coming from the right side (n > ) of the disordered chain. There is only a transmitted wave on the left side (n < 1) of the
disordered chain while on the right side of the system we can have a reflected wave along with the incident wave. Therefore the
amplitudes zo and x_; of the wave with frequency w can be taken as

zo=1,z_1 = e'X. (S.36)

Here, wave number ¢ and frequency w are related by the phonon dispersion relation [31]]

W2(q) = % sin? (12“) - % sin? (%) (5.37)
From Egq. (S:36), we obtain
eXag—x_1 =0 (S.38)
—e Xgg 421 = 2isiny. (S.39)
Thus, Eq. (S:33)) reduces to
i N
(_zf@ e o ;11) — 2isin x (%V;) (S.40)

where Ti(jN) represents the (i, j) element of the transfer matrix 7"V) defined in Eq. (S.34). Finally, the transmission coefficient,
7(w), for an incoming wave with frequency, w, is given by [4Q]

1 _ 4sin? y
T2 leTXange — N

7(w) = (S.41)
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FIG. S.5. (a) Transmission coefficient 7(w) for power law disorder with disorder strength ¢ = 2.50, k = 100, and N = 100. The black
dashed vertical lines indicate the eigenfrequencies of the disordered chain, and their height corresponds to Eq. (S:I0). The dependence of
the thermal conductance G, (L) on the system size (L) for different disorder strengths: (b) for uniform disorder and (c) for a power law
distribution of the disorder. We set k = 100 and 7" = 0.10. In panel (b-c), thick dots represent the actual data while the solid line shows
the power-law fit to the original data for large L. The scaling exponents for different disorder strengths remain unaffected for £ = 100. (d)
Thermal conductance for one dimensional disordered harmonic chains with different models of disorder in terms of the variable wi“ Jwr (see
main article for details). All data collapse approximately for small of"'l Jwr (d.e., large L), as expected.

Since, in our case the disorder does not break the time reversal symmetry, the transmission coefficient for phonons coming from
the right side of the disordered system is same as those coming from the left side of the system [40].

Using Eq. (S:29), one can obtain z v 12 and -1 and then calculate the transmission coefficient, 7(w), using Eq. (S:4T). For a
given L, once we obtain the transmission coefficient for different w, we can compute the thermal conductance for the disordered
chain using the Landauer formula given in main article. Finally, we average the results over 500 independent realizations of the
disorder.

V. DEPENDENCE OF TRANSMISSION COEFFICIENT ON L FOR A FIXED FREQUENCY

For a given strength of disorder, the transmission coefficient 7(w) depends on the length L of the disordered chain. The
L-dependence of In 7(w) for two arbitrarily chosen frequencies: (a) w = 0.5 and (b) w = 0.8 are shown in Fig. [S.4] .a—b) We set
k = 1and m = 1. In general, we find that (In 7(w)) decays linearly with L : (In7(w)) x — §(w) for different different values

of W. Thus, for a given W, the inverse of the slope of (In7(w)) — L curve gives us the localization length associated with the
particular mode of frequency w.

VI. SCALING OF THERMAL CONDUCTANCE WITH L FOR STRONG COUPLING, k(> 1)

In the main article, we discuss results for k£ = 0.01 (representing weak coupling between the system and the heat bath) and
k = 1.0 (intermediate coupling). Here, we show the effect of large k(> 1) on the transmission coefficient and the scaling of
thermal conductance. The transmission coefficient for different frequencies with & = 100 is shown in Fig. [S.5(a), where we
consider a disordered chain (power law disorder) with N = 100 and disorder strength ¢ = 2.50. For k = 100, 7(w) develops
well separated Lorentzians having area and width given by Eq. (S.I3){S.16] We have also verified that the scaling exponents
for thermal conductance with £ = 100 and £ = 0.01 remain same in different disorder regimes as demonstrated in Fig. b)
(for uniformly disordered chain) and Fig. S c) (for power-law disorder). When expressed in terms of the variable wz+ Jwr,
thermal conductance for one dimensional dlsordered harmonic chains with different models of disorder collapse approximately
for small wSH Jwr (see Fig. ld)) For a given T', we expect this collapse to work for large L (.i.e., small wy, and fixed wr).
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FIG. S.6. The T-dependence of the thermal conductance, G (7'), for a fixed length L(= 1000) of the disordered chain for uniform
disorder ((a) k = 1.0, (b) £ = 0.01 and (c) £ = 100) and power law disorder ((d) & = 1.0, (e) k = 0.01 and (f) kK = 100). For large
T(> hwr), Ggm(T) oc T~ irrespective of the disorder and coupling strength (k).

VII. SCALING OF THERMAL CONDUCTANCE WITH T FOR DIFFERENT COUPLING k&

The dependence of thermal conductance G, (T') on temperature 7" for a given L for different disorder and coupling strength
(k) is shown in Fig.[S.6{a-f). We first analyze the case k = 1.0. We find that Gy, (T) is close to unity for small T'(< hwy) and
it decays as 7! for T' > hwy, in all disorder regimes. Here, £(wz,) = L. For a given L, we can understand the dependence of
G¢m/(T') on T by considering the following observations. Phonons with frequencies such that the associated localization length
is less than the system size, L, are localized and consequently do not contribute to the thermal conductance. If T is such that
wr < wy, then the modes which are delocalized are thermally excited. For a given L, as T is increased from very small value
to Ty;, = hwy,, more and more delocalized (ballistic) phonons contribute to the thermal conductance G(L,T) and consequently
G(T) should initially increase with T for a given L. In Fig. a), we find that for a given W, G, (T) remains unity for
T <« Ty, implying that G(T') increases linearly with T' for T' < T;, (note that T is included in the definition of G, (L, T')).
For T' > T3;,, the modes which are localized (§(w) < L) are thermally excited and these modes do not contribute to the heat
transport, causing G(7') to saturate for 7' > T7;,. Such a saturation is reflected as the linear decay of Gy, (T)(< T71) in
Fig. @a), which is independent of the disorder strength, W. Note that for a given L, Ty;, decreases with increasing W and
subsequently the temperature regime for G, ~ 1 shrinks to smaller values with increasing W'.

We also find that the scaling Gy, (T') oc T~ for T > hwy, holds irrespective of nature of disorder and coupling strength (see
Fig.[S.6(a-)), following the theoretical prediction made in the main article.



	Thermal conductance of one dimensional disordered harmonic chains
	Abstract
	 References
	 Supplemental material for `Thermal conductance for one dimensional disordered harmonic chains'
	I Analytical prediction of the transmission coefficient in the regime of strong impedance mismatch
	II Characteristics of the eigenmodes and the eigenfrequencies of A in the strong coupling limit
	III Density of states
	IV Details of the transfer matrix method to compute transmission coefficient, ()
	V Dependence of transmission coefficient on L for a fixed frequency
	VI Scaling of thermal conductance with L for strong coupling, k (1)
	VII Scaling of thermal conductance with T for different coupling k


