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The computational cost of fluid simulations increases rapidly with grid resolution. This
has given a hard limit on the ability of simulations to accurately resolve small-scale
features of complex flows. Here we use a machine learning approach to learn a numerical
discretization that retains high accuracy even when the solution is under-resolved with
classical methods. We apply this approach to passive scalar advection in a two-dimensional
turbulent flow. The method maintains the same accuracy as traditional high-order flux-
limited advection solvers, while using 4× lower grid resolution in each dimension. The
machine learning component is tightly integrated with traditional finite-volume schemes
and can be trained via an end-to-end differentiable programming framework. The solver
can achieve near-peak hardware utilization on CPUs and accelerators via convolutional
filters.
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I. INTRODUCTION

A key problem in the numerical simulation of complex phenomena is the need to accurately
resolve spatiotemporal features over a wide range of length scales. For example, the computational
requirement for simulating a high Reynolds number fluid flow scales like Re3, implying that a
tenfold increase in Reynolds number requires a 1000-fold increase in computing power. Over the
past decades, the extra computing power made available through Moore’s law has been used to
increase grid resolution dramatically, leading to breakthroughs in turbulence modeling [1], weather
prediction [2], and climate projection [3]. Nonetheless, there is still a formidable gap towards
resolving the finest spatial scales of interest [4], especially with the recent slowdown of Moore’s law
[5,6]. Machine learning has given a potential way out of this conundrum, by training low-resolution
models to learn the rules from their high-resolution counterparts [7–10]. The learned models aim to
produce high-fidelity simulations using much less computational resources. Incorporating machine
learning into numerical models also facilitates the adoption of emerging hardware, considering that
the fastest growth in computing power now relies on domain-specific architectures such as graphical
processing units (GPUs) [11] and tensor processing units (TPUs) [12,13] that are optimized for
machine learning tasks.
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Recently we introduced data-driven discretizations [14] to learn numerical methods that achieve
the same accuracy as traditional finite difference methods but with much coarser grid resolution.
These methods are equation specific, and require training a coarse resolution solver with high-
resolution ground truth simulations. Since the dynamics of a partial differential equation is entirely
local, the high-resolution simulations can be carried out on a small domain. We demonstrated
the method with a set of canonical one-dimensional equations, demonstrating a 4–8× upscaling
of effective resolution [14]. Here we extend this methodology to two-dimensional advection of
passive scalars in a turbulent flow, a canonical problem in physics [15], and a classic challenge in
atmospheric modeling [16]. We show that machine-learned advection solver can use a grid with 4×
coarser resolution than classic high-order solvers while still maintaining the same accuracy. Code
and tutorials for this work are available in [17].

II. DATA-DRIVEN SOLUTION TO ADVECTION EQUATION

A. Advection equation

We consider the advection of a scalar concentration field C(�x, t ) under a specified velocity field
�u(�x, t ):

∂C

∂t
+ ∇ · (�uC) = 0. (1)

If the prescribed velocity field is divergence-free

∇ · �u = 0, (2)

then, Eq. (1) reduces [18] to

∂C

∂t
+ �u · ∇C = 0. (3)

A classical Eulerian scheme uses discretizations of the spatial derivative ∂C
∂x , often in a form of

∂C

∂x

∣∣∣∣
x=xi

=
k∑

j=−k

α jCi+ j, (4)

where {x1, . . . , xN } is the spatial grid points, Cj is the concentration at point x j , and {α−k, . . . , αk} are
predefined finite-difference coefficients. For example, a first-order forward difference Ci+1−Ci

�x (where
Ci+1 is in the upwinding direction) leads to the upwind scheme. Sophisticated high-order methods
with flux limiters will choose different coefficients depending on local fields [19]. Extension to two
dimensions can be done by either operator splitting (solve for each dimension separately) [20] or a
true two-dimensional discretization [21].

Although high-order Eulerian schemes are highly accurate under idealized flows [22], their
accuracy breaks down to first order under turbulent or strongly sheared flows, resulting in significant
numerical diffusion [16]. Adaptive mesh refinement can reduce such numerical diffusion [23],
but increases software complexity. Lagrangian methods avoid numerical diffusion [24], but have
inhomogeneous spatial coverage and also difficulties in dealing with nonlinear chemical reaction
[25]. Semi-Lagrangian approaches involve remapping from a distorted Lagrangian mesh to a regular
Eulerian mesh [26], and such remapping step exhibits similar numerical diffusion as Eulerian
methods. Flow-map approaches [27] can achieve Lagrangian-like accuracy on a Eulerian mesh,
but need to solve for the advection trajectory over multiple steps and requires a special treatment
to incorporate additional terms (e.g., chemical reaction) between advection steps. Different from
existing methods, here we aim to develop an ultra-accurate advection solver under the requirements
of (1) a strictly Eulerian framework on a fixed grid, (2) explicit time-stepping, and (3) only relying
on the current state to predict the next time step.

064605-2



LEARNED DISCRETIZATIONS FOR PASSIVE SCALAR …

FIG. 1. End-to-end learning framework with differential programming. During training, the model is
optimized to predict future concentrations across multiple time steps, based on a precomputed dataset of
snapshots from high-resolution simulations. During inference, the optimized model is repeatedly applied to
predict time evolution. The neural network component contains a stack of 2D convolutional layers with ReLU
activation functions (degraded to 1D convolution for 1D problems). Physical constraints are imposed before
and after the convolutional layers (Sec. II D). In the “Time-stepping” block, H is the advection operator that
computes the concentration update based on the machine learning estimate of spatial derivatives.

B. Learning optimal coefficients

Instead of using predefined rules to compute finite-difference coefficients [Eq. (4)], our data-
driven discretizations [14] predict the local-field-dependent coefficients �α = {α−k, . . . , αk} via a
convolutional neural network:

�α = f (C, �u;W ). (5)

The coefficients �α|x=x j depend on the local environment around x j , with the inputs to the neural
network being the neighboring fields {Cj,Cj±1, . . .} and {�u j, �u j±1, . . .}. For simplicity of presenta-
tion, here we use 1D indices { j, j ± 1, . . .} to denote spatially adjacent points. For two-dimensional
(2D) advection problems, this computation involves 2D convolution across both x and y dimensions.
We learn the neural network weights W by minimizing the difference between the machine learning
prediction and the true solution.

Figure 1 shows the forward solver workflow and training framework. During the forward solve,
we replace the computation of finite-difference coefficients with a convolution neural network, while
still using classic approaches for the rest of the steps (computing the advection flux and doing the
time-stepping). During training, we accumulate the forward solver prediction results over ten time
steps and then compare to the reference solution over this time period, by computing the mean
absolute error (MAE) over the entire spatial domain between the two time series:

MAE = 1

NM

N∑
i=1

M∑
j=1

∣∣Cpredict
j (ti ) − Ctrue

j (ti ).
∣∣ (6)

The MAE is used as the loss function for neural network training [28]. We find that using this
multistep loss function (as opposed to a single time step) stabilizes the forward integration, similar
to the findings by [29]. In our experiments, we found using MAE resulted in slightly more accurate
predictions than using mean square error, but the difference was not large.
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The training of a neural network inside a classic numerical solver is made possible by writ-
ing the entire program in a differentiable programming framework [30], which allows efficient
gradient-based optimization of arbitrary parameters in the code using automatic differentiation
(AD) [31]. AD tools have a long history, dating back to FORTRAN 77 [32]. Recent developments
of AD frameworks, such as TENSORFLOW [33], PYTORCH [34], JAX [35], FLUX.JL [36], and SWIFT

[37], are even easier to program and support hardware accelerators such as GPUs and TPUs. Those
developments make it easier to incorporate machine learning into scientific computing code (e.g.,
[38]). We implemented our advection solver in TENSORFLOW EAGER [39].

C. Baseline solver and reference solution

As a baseline method, we use the second-order Van Leer advection scheme with a monotonic
flux limiter [40]. To obtain the reference “true” solution, we run the baseline advection solver at
sufficiently high resolution to ensure the solution has converged. We then down-sample the high-
resolution results using conservative averaging, to produce the training and test datasets for our
machine learning–based model on a coarse grid.

We remark that although higher-order schemes with more advanced limiters would be more
accurate, any flux-limited high-order schemes break to first order under turbulent flows in order to
ensure monotonicity [16]. Starting from second order, increasing the spatial resolution is generally
more effective than further improving the solver order or the limiter [41,42].

D. Physical constraints

There is growing emphasis on embedding physical constraints into the design of machine
learning methods. This is typically done either by adding “soft” constraints as terms the loss function
[43,44], or “hard” constraints in the model architecture [14,45–49]. Since here we only replace a
small component in the numerical solver with machine learning, we can impose arbitrary physical
constraints before and after the neural network components. Using hard constraints allows the
machine learning algorithm to focus on approximation problems, by imposing physical consistency
requirements by construction. In particular, we require the following:

(1) Finite-volume representation for mass conservation. We compute the flux across grid cell
boundaries, and then apply the flux to update the concentration fields Ci. This ensures that mass is
exactly conserved. The machine learning estimate of spatial derivatives ∂C

∂x is used for obtaining the
optimal interpolation values Ci+(1/2) at cell boundaries, which is then used for calculating the flux
via ui+(1/2)Ci+(1/2).

(2) Polynomial accuracy constraints. Following [14], we can force the machine learning–
predicted coefficients to satisfy an mth-order polynomial constraint, so that the approximation
error decays as O(�xm). This ensures that if the learned discretization is fit to solutions that
are smooth on the scale of the mesh, we will recover classical finite-difference methods. In our
experiments, we find that a first-order constraint gives the best result on coarse grids. This preserves
a balance between accuracy constraints and model flexibility that may be particularly valuable in
nonmonotonic regions, where higher order advection schemes often revert to first-order upwinding
[19]. First-order accuracy requires

∑k
j=−k α j = 0, and can be enforced by applying an affine

transformation to the original neural network output (our implementation), or by having the neural
network only output {α−k, . . . , αk−1} and solving for the last αk . We choose the constant vector in the
affine transformation to match a centered, first-order scheme (equal weight on the two nearest grid
cells). Accordingly, our randomly initialized neural net at the start of training produces interpolation
coefficients that are very close to a centered, first-order scheme.

(3) Input feature normalization. Before feeding the current concentration field C to the neural
network, we normalize it globally to [0,1]. This ensures that the overall magnitude of the concen-
tration does not affect the prediction of finite-difference coefficients, and thus our solver satisfies
the “semilinear” requirement for advection schemes that H (aC + b) = aH (C) + b where H is the
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advection operator and {a, b} are constants (Eqs. 2.12 and 2.13 of [20]). Without such normalization,
we find that the trained model diverges quickly during the forward integration.

E. Other choices of learned terms

Our training framework can be easily adapted to learn other parameters besides the finite-
difference coefficients. In this section, we describe other approaches that we experimented with
but did not choose.

Numerical methods introduce artificial numerical dissipation, so it is natural to consider adding
explicit corrections to diffusion. One of the earliest flux-correct transport algorithms [50] includes
an antidiffusion coefficient of 1/8 as a correction term, though the choice of 1/8 was subjective
and it was later acknowledged that such correction should better be velocity- and wave-number
dependent [51]. We considered learning diffusive correction directly, in the form

∂C

∂t
+ ∇ · (�uC) +

(
Dxx

∂2C

∂x2
+ Dxy

∂2C

∂x ∂y
+ Dyy

∂2C

∂y2

)
= 0, (7)

where the (anti-)diffusion coefficients �D = {Dxx, Dxy, Dyy} are computed by a convolutional neural
network �D = f (C, �u;W ), while the advection-diffusion equation itself is still solved by a traditional
high-order finite volume method. The idea resembles learning the Reynolds stress tensor [10] in a
Reynolds-averaged Navier-Stokes simulation. As in Sec. II B, here the neural network is trained by
minimizing the difference between the model prediction and the reference solution. In practice, we
found that this learned diffusion model achieves about 3× upscaling compared to the second-order
baseline solver, but performs slightly worse than our original approach of learning finite-difference
coefficients (Sec. II B) that can achieve 4× upscaling.

We also experimented with other learned terms, including (1) a pure machine learning approach,
by having the neural network directly predict the concentration at the next step C(t + �t ) based
on the current state C(t ) and �u(t ); and (2) having the neural network directly predict the spatial
derivative ∂C

∂x instead of the finite-difference coefficients �α that need to be further multiplied with
the concentration field C to obtain the spatial derivative. We found those methods to be unstable due
to the lack of physical constraints (Sec. II D).

III. NUMERICAL RESULTS

We apply the data-driven discretization to one- or two-dimensional advection. Two-dimensional
advection is highly relevant for atmospheric modeling, as the vertical dimension can be decoupled
from the horizontal dimensions and solved independently [20].

The performance of our learned advection solver (the “neural network model” hereafter) depends
on the hyperparameters of the convolutional neural network component. For simplicity, this section
only presents the results with the default hyperparameter configuration. For 1D problems, we use 4
convolutional layers and 32 filters in each layer; For 2D problems, we use 10 convolutional layers
and 128 filters in each layer. All cases use a three-point finite-difference stencil [k = 1 in Eq. (4)].
The impact of hyperparameters on model accuracy and computational speed is further examined
in Sec. IV. We use the Adam optimizer [52] with default parameters for neural network training.
Our simple convolutional neural network architecture already achieves a high accuracy, without
additional operations such as residual connections and batch normalization.

A. 1D advection under constant velocity

We first show that our neural network model can achieve a near-perfect result for a canonical
test problem: 1D advection constant velocity [40]. We consider a periodic 1D grid of 32 grid points.
The concentration field is shifted by a constant distance per time step, determined by the Courant-
Friedrichs-Lewy (CFL) number u�t

�x . We set CFL = 0.5 (�x = 1, �t = 0.5, u = 1), so that the

064605-5



JIAWEI ZHUANG et al.

FIG. 2. One test sample for 1D advection under constant velocity. The concentration field is advected by a
half grid box every time step, and returns to the original position after every 64 time steps because the domain
is periodic. Our neural network model is able to maintain the initial shape indefinitely, while traditional solvers
accumulate numerical diffusion over time.

concentration field is shifted by a half grid box every time step, and returns to the original position
after every 64 time steps.

To generate training data, we initialize 30 square waves with heights randomly sampled from
[0.1, 0.9] and widths from two to eight grid points. Test data are randomly sampled from the same
range of width and height. The reference “true” solution is generated by the baseline solver at 8×
resolution (256 grid points) and down-sampled to the original coarse grid.

Figure 2 shows one test sample during the forward integration. The first-order upwind scheme
exhibits large numerical diffusion, due to its second-order spatial discretizaion error [53]. The
second-order Van Leer scheme (our baseline) is more accurate but still accumulates diffusion over
time. In contrast, our neural network model closely tracks the reference “true solution” obtained
by the 8× resolution baseline. When a slight numerical diffusion occurs at one step, the next step
applies a slight antidiffusion to correct it. Intuitively, the solver learns that the optimal solution in
one-dimensional advection is to maintain the initial shape.

Figure 3 shows the mean absolute error over time, averaged over all test samples. The error
indicates the deviation from the reference solution obtained by the baseline solver at 256 grid points.
The neural network model achieves a factor of 8 less error than the baseline second-order Van Leer
scheme.

We further investigate this intriguing behavior of our neural network model using out-of-sample
test data. As shown in Fig. 4, when the model (trained on square waves) is applied to Gaussian
initial conditions, it gradually turns Gaussian waves into squares, which are the only shape in the
training data. Then, the model can maintain the squares indefinitely. Such phenomenon of “turning
other shapes to squares” also exists in manually designed schemes that are overly optimized for
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FIG. 3. Error for 1D advection on test data. Here we only plot even time steps (0, 2, 4, . . .) for a smooth
curve, because the error oscillates between odd and even time steps (a result of CFL = 0.5).

square waves [51]. The overfitting problem here can be easily fixed by adding Gaussian shapes
into training data; after that the neural network model can track both Gaussian and square shapes
perfectly. Given that the input features for convolutional neural networks are localized in space,
covering representative input patterns only requires limited amounts of training data.

FIG. 4. Neural network prediction on out-of-sample data. The neural network model is only trained on
square waves, but applied to Gaussian initial conditions. The model gradually turns Gaussian waves into
squares, and then maintains the squares indefinitely.
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FIG. 5. Result on 2D deformational flow. The flow reverses at t = 2.5 and returns to the initial condition
at t = 5. The neural network model is able to maintain a sharp gradient, while the baseline model incurs large
numerical diffusion. The spatial domain is [0, 1] × [0, 1] (not plotted on axis).

B. 2D deformational flow

We next demonstrate that our neural network model can also achieve a near-perfect result for a
2D deformational flow test, originally proposed by [18] and later extended to spherical coordinates
as a standard test for atmospheric advection schemes [54,55]. The spatial domain is a square [0, 1] ×
[0, 1], and the velocity field is a periodic swirling flow:

u(x, y, t ) = sin2(πx) sin(2πy) cos(πt/T ),

v(x, y, t ) = sin2(πy) sin(2πx) cos(πt/T ),
(8)

where the period T = 5 in our setup. The direction of this flow reverses at t = (n − 1
2 )T for any

positive integer n. The exact solution at t = nT is identical to the initial condition.
The initial concentration field is a blob centered at [1/4, 1/4]:

C(x, y) = 1
2 [1 + cos(πr)],

r(x, y) = min
[
1, 4

√
(x − 1/4)2 + (y − 1/4)2

]
.

(9)

The model is not directly trained on this deformational flow, but instead on an ensemble of
periodic, divergence-free, random velocity fields, implemented as superpositions of sinusoidal
waves as described by [56]. The trained model is able to generalize across different flows as long as
the training data contain representative local patterns.

Figure 5 shows the advection under deformational flow for the baseline and the neural network
models, both on 64 × 64 grid points. The time step is chosen so that the maximum CFL number
is 0.5. The neural network model is able to maintain a sharp concentration gradient, while the
baseline Van Leer scheme incurs large numerical diffusion when the initial blob is stretched to a thin
filament [16].
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FIG. 6. Entropy for advection under 2D deformational flow. Entropy is conserved under pure advection
and increases under diffusion. Traditional monotonic solvers are only allowed to increase entropy, while our
neural network model is allowed to decrease entropy and thus minimizes diffusion error over a long time.

To quantify the numerical diffusion, we use the entropy S as a metric [57]:

S = −β
∑

i

Ci log(Ci ), (10)

where the concentration C is scaled such that the initial conditions fall in the range [0, 1], and β is a
normalization factor so that the initial entropy is 1. Entropy is conserved under pure advection and
increases under diffusion. To avoid an undefined answer if any Ci < 0, we first set negative values
of the concentration to zero, and evaluate C = 0 via the limit x log x = 0 as x → 0.

Figure 6 shows the entropy over time. Any monotonic advection solver can only increase entropy;
any entropy decrease indicates nonphysical antidiffusion, which often occurs due to numerical
instability. Strikingly, the neural network model can decrease entropy, while still remaining nu-
merically stable. Although such behavior seems to be nonphysical, it is indeed the best possible
solution on such a coarse grid. On a grid that perfectly resolves the concentration field, the entropy
remains constant under the deformational flow. Yet on a coarse grid view, the computed entropy
increases when the initial blob turns into filament due to conservative averaging, and then decreases
when the filament reverts back into a blob. Our neural network model can disobey the commonly
used constraint of nondecreasing entropy, and thus more closely matches the exact solution, when
compared to traditional monotonic solvers.

C. 2D turbulent flow

As the final test, we use the velocity fields from freely evolving, decaying 2D turbulence simula-
tions in PYQG [58]. The spatial domain is [0, 2π ] × [0, 2π ] with periodic boundary condition. We
use a 256 × 256 grid for generating the reference solution using the baseline solver, and a 32 × 32
coarse grid for model evaluation. As in previous cases, here the advection time step is chosen so
that the maximum CFL number is 0.5.

The training and test velocities are generated from different random seeds. We start with the
McWilliams-84 random initial condition [59] and let the turbulence decay with time. We discard
the initial 4 s of the simulation so that the velocity field can be resolved on the coarse grid. For the
initial concentration field, we use an ensemble of ten blobs with width 0.5 at random locations. Note
that the spatial scale of the concentration field under turbulent advection can become much smaller
than the scale of the velocity field [15,60], making it challenging for traditional advection solvers to
resolve the concentration gradient. We use 20 random initial conditions for training data and 20 for
test data. The actual sample size for the training dataset is much larger, as each initial condition is
integrated into a time series of 1024 steps on the fine grid or 128 steps on the coarse grid, which is
further broken into many ten-step time series for calculating the multistep loss function.
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FIG. 7. One test sample under 2D turbulent flow. The initial blobs (first column) are stretched into
thin filaments under the turbulent flow (last column), illustrated by the vorticity ω = ∂xuy − ∂yuv (rightmost
column). The baseline solver (second-order Van Leer scheme) can resolve such filaments on the fine-resolution
grid, but incurs large numerical diffusion on the coarse grid. The neural network model can preserve the sharp
features on the coarse grid. The spatial domain is [0, 2π ] × [0, 2π ] (not plotted on axis).

Figure 7 shows one test sample under the 2D turbulent flow, for both the initial condition (the left
column of Fig. 7) and the integration results after 256 time steps (the middle and right columns of
Fig. 7). Note that this is twice the maximum number of time steps used for model training. The initial
blobs are stretched into thin filaments under the turbulent flow. The baseline solver (second-order
Van Leer scheme) can resolve such filaments on the fine-resolution grid, but incurs large numerical
diffusion on the coarse grid and loses the sharp concentration gradient. However, when the fine-grid
solution is directly resampled to the coarse grid, most sharp features can actually be preserved.
Thus, the inability to resolve sharp gradients is not due to the coarse grid itself, but instead due to
the numerical error in the baseline advection solver. Our neural network model, trained to track the
optimal reference solution on the coarse grid, is able to preserve sharp features during the forward
integration. The model performs well on all test samples, with more shown in the Appendix.

Figure 8 shows a variety of error metrics for advection under turbulent flow, averaged over all
test samples. The error is computed as the deviation from the reference solution obtained by the
baseline solver at the 256 × 256 grid. We also compare the baseline solver at intermediate grid
resolutions (64 × 64 and 128 × 128). All solutions are resampled to the 32 × 32 coarse grid for
error calculation. We use two measurements of accuracy, mean absolute error (our training loss) and
the coefficient of determination R2, which means the goodness of fit for linear regression models
for the reference solution. Based on these metrics, our neural network model achieves roughly the
same accuracy as the baseline method at 4× resolution (128 × 128). We also evaluate the entropy
for all solutions based on Eq. (10), which suggests that from a statistical perspective our neural net
model almost perfectly matches the reference simulation on which it was trained.

Figure 9 illustrates the limitations of stability and generalization for our neural net model by
integrating for far longer than the 128 time steps used for training data. After 1000 time integration
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FIG. 8. Error for 2D turbulent advection on test data. The neural network model achieves the same accuracy
as the second-order Van Leer baseline scheme at 4× resolution, and entropy similar to the baseline at 8×
resolution.

steps, our neural net model shows obvious numerical artifacts (checkerboard patterns) and very
poor accuracy for about 10% of random seeds. Unlike the baseline models, our neural net model
does not guarantee properties such as monotonicity, and when presented with examples outside
of its training data it occasionally extrapolates poorly. Figuring out how to guarantee stability for
neural net models, either by training on more comprehensive datasets or by imposing architecture
constraints, is an important topic for future work.

Finally, to get a glimpse into the inner workings of the trained model, Fig. 10 examines predicted
interpolation coefficients for the x component of the velocity field. We see that similar to handcrafted
methods, the learned interpolation depends on both velocity and concentration. While some of the
symmetries have been clearly learned from the data, we believe that incorporating such priors could
improve the results further.

IV. COMPUTATIONAL PERFORMANCE AND ACCURACY
WITH DIFFERENT HYPERPARAMETERS

There is a trade-off between accuracy and speed for our neural network model, as using a larger
convolutional neural network increases both the accuracy and the run time. We performed a grid
search on model hyperparameters, for the number of layers ranging from [4, 6, 8, 10], the number
of convolutional filers ranging from [16, 32, 64, 128], and the finite-difference stencil size ranging
from [3, 5], with each case replicated three times with different random seeds. The model accuracy
is evaluated on the 2D turbulence case in Sec. III C, and the run time is measured on a single Nvidia
V100 GPU.
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FIG. 9. Limitations of long-time stability under 2D turbulent flow. (a) Ten randomly chosen examples of
concentration fields from the neural net model after 1024 time steps. One field (first row, fourth column) is
entirely covered by “checkerboard” artifacts, and two others (top left and bottom right) show checkerboard
artifacts in limited regions. (b) Empirical distribution function for absolute error across all models after 256
and 1024 time steps. The neural net performance suffers significantly, with about 10% of solutions having an
absolute error greater than 1.

Figure 11 shows the model accuracy and speed using different hyperparameters. The perfor-
mance of the baseline solver at intermediate grid resolutions (64 × 64 and 128 × 128) is overlaid
for comparison. A large neural network (8–10 layers and 128 filters) achieves comparable accuracy
and speed as the baseline solver at 4× resolution, while a small neural network (4 layers and 32
filters) performs similarly to the baseline solver at 2× resolution. Figure 12 shows that using 64
filters and 10 layers achieves a good balance between accuracy and speed, in which case the model
achieves similar accuracy as the 4× resolution baseline while being 80% faster.

The model speed largely depends on the code implementation and software configuration. Our
current implementation of the neural network model has a lot of room for performance optimization.
For example, our code still requires unnecessary, large memory allocation, and does not use
the reduced-precision tensor cores in the V100 GPU. With more performance tuning as well as
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FIG. 10. Interpolation coefficients for 2D advection. Illustration of how prediction of the interpolation
coefficients changes for different combinations of concentration (top row) and velocity field (left column)
inputs. Concentration values represented by color; velocity field has unit magnitude and changes direction
as shown in the plot. The target location for the interpolation is marked by a red bar on the concentration
plots. The model predominantly interpolates along the velocity field and concentration edges, rediscovering
the upwindinglike methods at the corner cases of the facet. While the model learned some general symmetries,
we expect even better results for models that incorporate symmetries by construction.

techniques like model compression and quantization [61], the neural network model may signifi-
cantly outperform the baseline in terms of computational performance.

Incorporating neural networks into numerical methods also allows better utilization of current
and emerging hardware. It is reported that “current (Earth system) models running on next genera-
tion architectures use less than 2% of peak performance” [62]. This is because classic numerical
methods (e.g., finite difference, finite volume) are limited by memory bandwidth rather than
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FIG. 11. Accuracy-speed trade-off for neural network model. Each data point is a neural network model
with different hyperparamters (detailed in Fig. 12). The performance of the baseline solver at intermediate grid
resolutions (64 × 64 and 128 × 128) is overlaid for comparison. The model accuracy is evaluated on the 2D
turbulence case after 256 time steps (Sec. III C), and the run time is measured on a single Nvidia V100 GPU.
The x axis shows the wall-clock time per advection time step on the coarse grid, which requires two or four
time steps for the 64 × 64 or 128 × 128 baseline due to the CFL condition.

FIG. 12. Hyperparameter effect on neural network model performance. Same as Fig. 11, but here the data
points are grouped by different numbers of convolutional layers and the number of filters, with symbol shape
denoting the size of the stencil. Duplicate points correspond to identical models trained with different random
seeds.
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FIG. 13. Sample results for advection under 2D turbulent flow. Concentration fields after 256 time steps
are illustrated for six different randomly initialized concentration and velocity fields. The models are the same
as those illustrated in Fig. 7.

processor speed [63,64]. In contrast, neural networks mostly consist of dense matrix multiplications
with a high compute-to-memory ratio, and therefore can achieve near-peak performance on both
CPUs and hardware accelerators (see the Roofline charts [65] in [66]). We measure the machine
utilization using Perf on CPU and NVProf on GPU, and find that the neural network model achieves
80% of peak FLOPs (floating point operations per second), while the baseline solver only uses
1 ∼ 2% of peak FLOPs. Clever use of neural network emulations inside existing models may
provide a way to squeeze out “free compute cycles” that are currently not utilized.

V. CONCLUSION

We developed a data-driven discretization for solving passive scalar advection in one or two
dimensions. Instead of using predefined coefficients to compute the spatial derivatives in the partial
differential equation, we used a convolutional neural network to learn the optimal finite-difference
coefficients, so that the solution best matches the “true” result obtained by high-resolution reference
simulations.

Our neural network–based model is able to obtain near-perfect results for idealized 1D and 2D
test problems, while a traditional high-order solver incurs significant diffusion error. Under a 2D
turbulent flow, the neural network model running on a coarse grid can achieve the same accuracy
as a traditional high-order solver running on a 4× higher resolution grid. The model learns local
features of the flow, which enables it to generalize far beyond the velocity fields where they are
trained. The learned discretizations act locally, and so the training data needs to cover the range of
local velocity gradients that exist in the flow. This means that by training the the model on periodic,
divergence-free random velocity fields we were able to create a model that accurately reproduced a
standard test problem [18] very far from this training data.

It is worth noting that the results in this paper accelerate Eq. (1), which neglects diffusion.
Dissipation is an intrinsic feature of multidimensional flows. Nonetheless, equations of this form
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are routinely studied by fields such as atmospheric chemistry, where the diffusivity is much smaller
than the numerical diffusion even on very fine meshes. Indeed, the test problem we used in Fig. 5 is a
standard test problem originally proposed by Leveque [18] in the atmospheric chemistry community
[54,55], where practitioners routinely study a pure advection equation on the sphere. In general if a
passive scalar has a diffusivity D and a velocity field induces a stretching rate γ , there is a length
scale

√
D/γ where diffusion balances stretching. The pure advection problem sends D → 0 so

that this scale vanishes. When this occurs, this dissipative scale is set by numerical diffusion. The
important point from the standpoint of this paper is that nonetheless, the algorithms we present
are able to accurately reproduce resolved dynamics on coarser grids. As long as the underlying
numerical method that the model is trained to reproduce is convergent in the sense of classical
numerical analysis, then the resulting solutions will be accurate.

The neural network model exhibits several interesting behaviors that may help explain its unusual
accuracy. Our learned models have been specifically optimized for modeling a specific class of flows
used as training data, which limits their range of validity. For example, in 1D the model converts
unseen shapes into known shapes, and on 2D turbulent flows the model occasionally fails entirely
when asked to make predictions for much longer times than were used in training. An important
challenge for future work is to identify techniques that can ensure learned discretizations are robust
even to such out-of-distribution inputs. Alternatively, it may be able to identify training datasets that
cover the full range of phenomena of interest, e.g., in the context of weather or pollution forecasts
where the same equations are solved day after day.

At the same accuracy, the speed of our neural network model is comparable to the baseline
high-order solver (that runs at 4× higher resolution). There is a lot of room for further optimizing
the neural network performance in our code implementation. Notably, the neural network model
can achieve a much higher machine utilization than traditional finite-difference methods, and will
better utilize emerging hardware accelerators.

An open question is how to apply our method in existing computational fluid dynamics (CFD) or
climate and weather models, which tend to be implemented in large codebases of C++ or Fortran.
Although past work has successfully replaced one component in a model with neural networks [67],
our approach works best in an end-to-end differentiable program. Recent efforts in implementing
models in JULIA [68] and JAX [38] should ease the integration of scientific computing and machine
learning.
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APPENDIX: SAMPLE RESULTS FOR 2D TURBULENT ADVECTION

Figure 13 shows more test samples for the 2D turbulent advection problem in Sec. III C. In all
test samples, the neural network model is able to maintain a sharp gradient that closely matches the
reference true resolution, while the baseline model incurs significant numerical diffusion error.
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