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Problems of flexible mechanical metamaterials, and highly
deformable porous solids in general, are rich and complex due
to their nonlinear mechanics and the presence of nontrivial geo-
metrical effects. While numeric approaches are successful, ana-
lytic tools and conceptual frameworks are largely lacking. Using
an analogy with electrostatics, and building on recent devel-
opments in a nonlinear geometric formulation of elasticity, we
develop a formalism that maps the two-dimensional (2D) elas-
tic problem into that of nonlinear interaction of elastic charges.
This approach offers an intuitive conceptual framework, qual-
itatively explaining the linear response, the onset of mechan-
ical instability, and aspects of the postinstability state. Apart
from intuition, the formalism also quantitatively reproduces full
numeric simulations of several prototypical 2D structures. Pos-
sible applications of the tools developed in this work for the
study of ordered and disordered 2D porous elastic metamaterials
are discussed.
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The hallmark of condensed-matter physics, as described by
P. W. Anderson in his paper “More is different” (1), is

the emergence of collective phenomena out of well-understood
simple interactions between material elements. Within the ever-
increasing list of such systems, mechanical metamaterials form a
particularly interesting class due to the high contrast between the
simplicity of the interactions between constituting elements and
the richness of the emergent physics (2–4).

While initial studies focused on the design of mechanical
metamaterials with unusual mechanical properties in the lin-
ear regime (2, 3), more recently it has been shown that by
embracing large deformations and instabilities these systems
can achieve exotic functionalities (4). A prominent example of
such nonlinear mechanical metamaterials consists of an elas-
tomeric matrix with an embedded periodic array of holes (5).
A typical stress–strain curve for such two-dimensional (2D)
elastic metamaterials is shown in Fig. 1A. Under uniaxial com-
pression, the linear response of the solid (at small loads) is
a uniform deformation of the circular holes into ellipses, with
their major axes oriented perpendicular to the direction of
compression (see, e.g., Fig. 4, Right). This deformation is typ-
ically difficult to see experimentally, because at higher loads
the system develops an instability and the stress plateaus. In
a square lattice this instability results in the formation of a
checkerboard pattern with the elongated holes taking alternate
horizontal and vertical orientations, whereas in triangular lat-
tices it leads to either a “zig-zag” or a Rosetta pattern (Fig. 1C),
depending on the direction of the load. This spontaneous break-
ing of symmetry is a telltale sign of an underlying nonlinear
mechanism responsible for an instability (6). Interestingly, this
response is largely material independent, not only qualitatively
but also quantitatively (e.g., the critical strain at instability),
implying a universal origin of the nonlinear mechanism. A cen-
tral question then is how the nontrivial mechanics of these
perforated elastic metamaterials emerge from their underlying
elasticity.

A theoretical analysis of the elastic problem requires solv-
ing the nonlinear equations of elasticity while satisfying the
multiple free boundary conditions on the holes’ edges—a seem-
ingly hopeless task from an analytic perspective. However, direct
solutions of the fully nonlinear elastic equations are accessi-
ble using finite-element models, which accurately reproduce the
deformation fields, the critical strain, and the effective elastic
coefficients, etc. (6). The success of finite-element (FE) simula-
tions in predicting the mechanics of perforated elastic materials
confirms that nonlinear elasticity theory is a valid description,
but emphasizes the lack of insightful analytical solutions to
the problem.

A first attempt toward a theoretical explanation for this phe-
nomenon was taken by Matsumoto and Kamien (7, 8), who
studied the interactions between holes based on the linear the-
ory of elasticity. In their works they showed that the buckled
patterns are consistent with energy-minimizing configurations of
interacting holes, if each hole is modeled as a pair of disloca-
tions. While their work successfully captures the buckled modes,
this approach is qualitative and cannot predict either the critical
strain at instability or the preinstability linear response and the
effects of holes on it. However, as a theory limited to describ-
ing the buckled state, Matsumoto and Kamien’s (7, 8) success
implies that the concept of interacting holes can form the basis
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Fig. 1. (A) A sketch of a typical stress–strain curve for periodically per-
forated elastic metamaterial. (B and C) Metamaterials composed of an
elastomer with a square lattice (Left column) or triangular lattices at two
different orientations (Center and Right columns). The materials are shown
in undeformed (B) and postbuckling deformed (C) configurations, under
uniaxial compression. In the square lattice the instability is reflected as a
checkerboard pattern of horizontal and vertical hole shapes whereas in
the triangular lattice, due to frustration, the unstable mode forms either
a zig-zag or a Rosetta pattern, depending on the direction of loading.

for an effective “lattice” theory of elastic metamaterials with
periodic arrays of holes.

In this work we derive a formalism that bridges the gap
between the successful “microscopic theory” (nonlinear elas-
ticity) and the macroscopic effective theory. As we will show,
this formalism provides an insightful and intuitive description of
perforated elastic metamaterials without losing the quantitative
capabilities of the microscopic theory. While the algebra might
be somewhat technical, the qualitative picture that emerges from
it is clean and elegant. Therefore, we structure the paper as
follows: First, we qualitatively derive the main results of our anal-
ysis, using an analogy to a well-known problem in electrostatics
(Qualitative Picture). Then, we describe the full formalism (The
Method) and finally we quantitatively compare its predictions to
full numerical calculations (Results).

Qualitative Picture
There are two major challenges in writing an analytical the-
ory: the multiple boundary conditions imposed by the holes and
the nonlinearity. As shown below, both these challenges can be
tackled with the language of singular elastic charges. In what
follows we demonstrate that the phenomena can be approxi-
mately, but quantitatively, described in terms of interacting elas-
tic charges with quadrupolar symmetry, located at the center of
each hole. These are image charges, much like the image charges
that are used to solve simple electrostatic problems (9). When
the loading is weak (linear response), the interaction of the
charges with the external field dominates and the quadrupoles
align perpendicularly to the direction of compression. At
higher stresses, due to geometrical nonlinearities, the interaction
between charges dominates their interaction with the external

field, leading to the buckling instability that creates the patterns
shown in Fig. 1.

Using the language of singular image charges to simplify cal-
culations is common in field theories governed by the Laplace
(or bi-Laplace) equation. Besides the well-known electrostatic
example, this technique was used in analyzing low Reynolds
number fluid dynamics (refs. 10–14, among many others), flux
pinning in superconductors (15), capillary action (16), linear
elasticity (17, 18), and relativity (19). Below we use the language
of electrostatics, which we assume is familiar to the reader, to
give a pedagogical analogy for the corresponding problem in
elasticity.

Electrostatic Analogy. Consider a circular conductive shell in the
presence of a uniform external electric field. Solving for the
resultant field requires a solution of Laplace’s equation with
specific boundary conditions on the conductive surface. One par-
ticularly insightful method to solve this equation, introduced in
elementary physics classes, is the method of image charges. The
trick is that placing “imaginary” charges outside the domain of
interest (i.e., inside the shell) solves by construction the bulk
equation, and wisely chosen charges can also satisfy the bound-
ary conditions. Indeed, the problem is solved exactly by placing
a pure dipole at the shell center. From the perspective of an
observer outside the shell, the presence of the conductive surface
is indistinguishable from that of a pure dipole. Thus, the concept
of image charge not only opens an analytic pathway for solving
the problem, but also provides intuition about the solution and
specifically on the physical effect of boundaries.

We note two properties of the solution which will have exact
analogs in elasticity: First, the imaginary charge is a dipole, not a
monopole. Electrostatic monopole image charges are disallowed
because they are locally conserved. That is, the net charge in a
given region can be completely determined by a surface integral
on the region’s boundary (Gauss’s theorem). Second, the mag-
nitude of the dipole moment turns out to be proportional to the
external field and to the circle’s area (in 2D).

How are the correct image charges found? A common strat-
egy is to find them by enforcing the boundary conditions directly.
This works only in cases where the image charges can exactly
solve the problem. An alternative approach is via energy min-
imization, which gives an approximate solution when the exact
one cannot be represented by a finite number of image charges.
In fact, a potential φ that satisfies the bulk equation and its
boundary conditions is also a minimizer of the energy

F =

∫
Ω

1
2
|~∇φ−Eext|2dS −

∮
∂Ω

ρφ dl , [1]

where Eext is the imposed external field, Ω is the problem domain
(e.g., R2 with a circle taken out), and ∂Ω is its boundary. For
simplicity, here we work in units where the permittivity of space
is unity. The function ρ is a Lagrange multiplier enforcing a con-
stant potential on the conducting boundary (SI Appendix). For
the problem described above, after guessing a solution in the
form of a single dipole, its magnitude can be found by minimiz-
ing the energy Eq. 1 with respect to the dipole vector and ρ. The
result satisfies the boundary conditions exactly.

Consider now a harder problem: an array of conducting cir-
cular shells in an external electric field, introducing the com-
plication of multiple boundary conditions. In contrast with the
single-shell problem, guessing a finite number of image charges
that will balance boundary conditions is impossible: The image
charges are now reflections of the external field, but also of all
other image charges. Therefore, in general, the image charge in
each shell is composed of an infinite number of multipoles. While
an exact solution is hard to guess, by minimizing the energy we
can nonetheless obtain an approximate solution. Each circular
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shell is going to be polarized, and the dominant image charge
inside each shell is dipolar: While imaginary dipoles can balance
uniform electric fields on a circle, higher-order multipoles corre-
spond to balancing fields that vary spatially on the scale of the
shell. Thus, guessing a solution in terms of dipoles reflects an
assumption on the spatial variability of the fields, and account-
ing for higher-order multipoles inside each shell would improve
the accuracy of the solution. Specifically, we guess an ansatz
of the form

φ (x)=
∑
i

pi ·φp (x− xi), [2]

where pi is the image dipole vector located at xi (the center of
the i th conducting shell), and φp is the well-known solution for
the potential of a single electric dipole. The energy can be written
as a quadratic form in the unknown charges pi ,

F =
∑
i,j

Mij pipj −
∑
i

mipi , [3]

where

Mij =
1

2

∫
Ω

(
~∇φp(x− xi)

)(
~∇φp(x− xj )

)
dS ,

mi =

∮
∂Ω

φp(x− xi)ρi (x)dl .

[4]

The matrix M quantifies interactions between image dipoles in
different shells, and m quantifies interactions of these dipoles
with the external field. Since the potential of a dipole is known
in explicit analytical form, calculating M and m is a trivial
task of integration†. Then, minimizing the energy Eq. 3 is
straightforward.

The Elastic Problem. All of the above concepts can be translated,
with some modifications, to elasticity theory. The linear elastic
analog of the single conducting shell problem happens to be a
famous example, solved by Inglis (20) in 1913: a circular cavity
in an infinite 2D elastic medium, subject to remote stress. Math-
ematically, the problem amounts to solving the biharmonic equa-
tion for the Airy stress function and, like the electrostatic analog,
the Inglis solution is equivalent to a pure imaginary elastic charge
at the shell center (21, 22). The charge is a quadrupole and in
the linear theory its magnitude is proportional to the applied
stress and to the hole’s area (SI Appendix, section 2). But what
are elastic charges?

A geometric approach to elasticity (23) uncovers the math-
ematical nature of elastic charges. The physical quantity asso-
ciated with elastic charges is Gaussian curvature; that is, a
monopolar charge is a singular distribution of Gaussian curva-
ture. As an example, consider a thin conical surface confined
to the flat Euclidean plane. The stressed state of the flattened
cone reflects a geometric incompatibility between the flat embed-
ding space and the conical reference state. The incompatibility
is quantified by the Gaussian curvature of the reference state,
which in the case of a cone is a delta-function singularity at the
apex (24, 25).

Since the Gaussian curvature of the reference state acts as
a singular source of elastic fields, it can be interpreted as an
elastic charge. In crystalline materials, the monopole singularity
described above is manifested as a disclination (24, 25). A dipole
of elastic charges, i.e., a pair of disclinations of equal and oppo-
site magnitude, forms a dislocation (24). Finally, a quadrupolar

† In principle, one should also decompose ρ in terms of the dipolar fields. We do not go
into these details here.

charge, like the one which solves the circular hole problem, is
realized as a dislocation pair with equal and opposite Burgers
vectors, which in hexagonal lattices is known as the Stone-
Wales defect (26). In the context of continuum theory the elastic
quadrupole is known as an elliptic Eshelby inclusion, i.e., an irre-
versible deformation of a circular domain into an ellipse (27, 28).
Another realization of a quadrupole is a force dipole applied
locally to an elastic substrate, e.g., by adherent contractile
biological cells (29).

Like in the electrostatic case, the fact that the lowest-order
multipole that solves the hole problem is a quadrupole is a direct
consequence of a conservation theorem. In electrostatics, local
creation of monopoles is disallowed by conservation. In elastic-
ity, both the monopole (Frank’s vector) and the dipole (Burgers’
vector) are conserved (30, 31). For a rigorous derivation of all
these results, see ref. 32.

With the method of image charges on one hand and the con-
cept of elastic charges on the other hand, we can now attack
the problem of 2D elastic metamaterials containing an array of
holes. This problem can be solved by placing imaginary charges
in the center of each hole, but these charges also create their
own image charges inside other holes, like in the electrostatic
case of an array of conducting shells. That is, the complex
interactions between holes can be described in terms of mul-
tiple image charges interacting with each other and with the
imposed external field. As in the electrostatic case, an approx-
imate solution for a given external load can be derived by
guessing a solution for which the elastic fields are dominated
by the lowest-order nontopological charges, that is, imaginary
quadrupoles (22).

Interacting Quadrupoles. Let us assume for the moment that the
solution is indeed composed of a quadrupole located at the cen-
ter of each hole. As a first attempt, let us also assume that the
magnitude of all quadrupoles is fixed and they are free to rotate
(this is in fact a good approximation for the cases shown in Fig. 1
B and C, Left and Center). This picture, of interacting rotat-
ing quadrupoles, is very close in spirit to the phenomenological
description in Matsumoto and Kamien (7), who described each
hole as a pair of opposite dislocations, i.e., an elastic quadrupole.
To proceed, we need to understand the interaction between
two pure elastic quadrupoles in an infinite elastic medium. For
two quadrupoles of magnitude Q1,Q2 and orientations θ1, θ2

(θi is measured with respect to the line connecting the two
quadrupoles; Fig. 2A), the interaction energy is (33)

E =
Q1Q2

πr
cos (2θ1 + 2θ2). [5]

This energy is minimized for configurations satisfying θ1 + θ2 =
π/2, which is a one-dimensional continuum of minimizers.
Fig. 2A presents two such optimal configurations.

What is the optimal configuration of a lattice of quadrupoles?
For a square lattice, if only nearest-neighbors interactions are
taken into account, two distinct energy-minimizing configura-
tions satisfy the condition θ1 + θ2 =π/2 for all neighboring
quadrupoles: 1) all quadrupoles having an angle of π/4 relative
to the horizontal axis (as in Fig. 2A, Top) and 2) a checkerboard
pattern of horizontal and vertical quadrupoles (as in Fig. 2 A
and B, Bottom). The checkerboard pattern has a lower energy
because it also minimizes the interaction between quadrupoles
on opposing sides of the unit square diagonal, i.e., next-nearest
neighbors. Note that this is exactly the pattern of the buckled
state of the square lattice (cf. Fig. 1).

Unlike the square lattice, the symmetries of the triangular lat-
tice are incompatible with those of the interacting quadrupoles;
i.e., it is impossible to simultaneously minimize the interaction
of the quadrupoles with the external field and their nearest

Bar-Sinai et al. PNAS | May 12, 2020 | vol. 117 | no. 19 | 10197
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Fig. 2. Interacting elastic quadrupoles, illustrated by the deformation fields
they induce on the holes’ edges. (A) Two energy-minimizing configurations
of quadrupoles of fixed magnitudes and free orientations. Top configura-
tion shows θ1 = θ2 =π/4 while Bottom one shows θ1 = 0, θ2 =π/2. (B) An
array of quadrupoles on a square lattice minimizing their interaction energy
with nearest and next to nearest neighbors, as given by Eq. 5. The relative
orientation of any nearest-neighbor pair is like that in A, Bottom, and that
of next-nearest pairs is like that in A, Top. (C) Like B, but for a triangular
lattice.

neighbors. Direct minimization of nearest-neighbors interactions
energy with respect to quadrupoles orientations gives the pattern
shown in Fig. 2C. As before, the quadrupole orientations are in
agreement with the observed unstable mode. The Rosetta pat-
tern observed in Fig. 1C, Right, however, is not captured by this
simplified model, since in it the quadrupole magnitudes are not
uniform.

Collecting the Pieces. The conclusion from the previous section
is that the unstable modes resemble a collection of interacting
quadrupoles. We suggest that rigorously describing the system as
a collection of interacting quadrupoles is a perturbative approx-
imation of the full solution: At low stresses, all quadrupoles
are aligned with the external field. At higher stresses the elas-
tic metamaterial buckles and, as we have just seen, the buckled
states are consistent with a model of interacting quadrupoles.
This suggests that the postinstability response is dominated by
charge–charge interaction rather than interactions of charges
with the external load.

We emphasize, however, that this picture does not have
a (linear) electrostatic analog. In linear systems, the induced
charges are always proportional to the external loading (E ext

in Eq. 1) and therefore the interaction between themselves
cannot, by construction, dominate their interaction with the
external field. The mechanism described above is manifestly
nonlinear and requires a generalization of the electrostatic
arguments. The observed instability emerges from a geomet-
ric nonlinearity, which is inherent to elasticity and does not
have an electrostatic analog. Below we show how the frame-
work of interacting charges can be expanded to account for
all these effects.

The Method
The fundamental field in the theory of elasticity is the displace-
ment field d, which measures the spatial movement of material
elements from a reference position to its current one. Local
length deformations are quantified by the strain tensor u (34),

u =
1

2

(
∇d +∇dT +∇dT ·∇d

)
. [6]

The elastic energy density, which results from local length
changes, can be written as a function of u. Linear elasticity is
a leading-order perturbation theory for small deformations and
therefore E is written as a quadratic function of u, alias Hookean
energy

E = 〈u, u〉+O(u3). [7]
Here 〈v, u〉≡

∫
Ω

1
2

vAu dS is an integration over the domain Ω of
the contraction of the tensor fields u, v with a 4-rank tensor A,

known as the elastic (or stiffness) tensor, which encodes mate-
rial properties such as Young’s modulus and Poisson’s ratio (SI
Appendix, Eq. S4).

Although the energy is quadratic, the theory as presented
above is still nonlinear due to the ∇dT ·∇d term in strain (Eq.
6). Neglecting it (assuming ∇d� 1) yields the familiar theory
of linear elasticity (30). That is, linear elasticity is obtained by
performing two conceptually distinct linearizations: a rheological
linearization, neglecting higher-order material properties (the
O(u3) term in Eq. 7), and a geometrical linearization, neglecting
the quadratic term in Eq. 6. In the former, the neglected non-
linear behavior is rheological and therefore material specific. In
the latter, the neglected terms are geometrically universal and
relate to rotational invariance. Since, as described above, the
nonlinear mechanics of elastic metamaterials with arrays of holes
are largely material independent, it is reasonable to speculate
that a suitable analytical description of the system is that of a
nonlinear geometry with a quadratic (Hookean) energy. There-
fore, we take Eqs. 6 and 7 to be the governing equations in
this work.

Numerical analysis has confirmed the applicability of these
equations in two respects: First, a full numerical solution of
the governing equations accurately reproduces experimental
results (6). Second, calculations show that even in the buck-
led state, which is clearly a nonlinear response, |∇d| is of
order unity‡ due to almost-rigid rotations of the junctions
between holes, invalidating the geometric linearization. How-
ever, the nonlinear strain, Eq. 6, is small due to cancelation
of the linear and quadratic terms, justifying the rheological
linearization in Eq. 6. From a theoretical perspective this
observation suggests that a careful analysis of small nonlinear
strains should recover the phenomenology of perforated elastic
metamaterials.

Bulk Energy. Similarly to Eq. 2, we express the total deformation
in the system as induced by quadrupoles located at the centers of
the holes, with some charges placed in lattice sites immediately
outside the solid, as illustrated in Fig. 3. Using a recent general-
ization of the method of Airy stress function, which allows solving
elastic problems with arbitrary constitutive relations, strain def-
initions, or reference states (33, 35), we perform a perturbative
expansion of the nonlinear quadrupolar fields§. Symbolically, the
displacement induced by a single charge qαβi located at xi is
expanded in powers of charges

d(x) =
∑
i,α,β

qαβi d(1)
αβ(x− xi) + qαβi

2 d(2)
αβ(x− xi) +O(q3), [8]

where d(n)
αβ is the displacement to the nth order associated with

the charge qαβi . Here Greek indices represent the different
quadrupolar components and Latin indices represent the loca-
tion of the image charge in the 2D lattice. A detailed derivation
is given in SI Appendix, section 1 and explicit analytical forms
of the geometrically nonlinear fields associated with small elastic
multipolar charges are given in an attached Mathematica note-
book (see Data Availability for details). In addition to image
charges at the hole centers, we also allow for uniform elastic
fields, which within the formalism are described as quadrupolar
charges located at infinity.

‡e.g., with respect to the Frobenius norm.
§ In fact, a careful analysis of the elastic equations reveals that there are two distinct types
of elastic monopoles and consequently also two types of quadrupoles. For succinctness
in the text we refer to quadrupoles in a general manner, but in the actual calculations
we do take into account both types of quadrupoles in each hole. A detailed calculation
is presented in SI Appendix.
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Fig. 3. The three prototypical lattices studied in this work. Shown are
square and triangular lattices of circular holes with uniform size subjected
to external displacement dext applied on the ligaments forming the bound-
aries. The locations of the image charges are marked with black + signs. The
ligaments over which the displacement boundary conditions are imposed
are marked with arrows.

We note that Eq. 8 contains two distinct approximations: 1)
truncating the multipole expansion at the quadrupolar order and
2) truncating the expansion at the quadratic order in q . The for-
mer is an uncontrolled approximation whose validity depends on
the geometry of the system, and the latter is a controlled approx-
imation, which becomes exact in the limit of small (nonlinear)
strains (32).

For notational simplicity, it is easier to denote the collection of
all components of all charges, either at hole centers or at infinity,
by a single vector Q, replacing the three indices α,β, i by a single
index. Combining the ansatz Eq. 8 with the elastic energy Eqs. 6
and 7, we obtain

E =
∑
ij

M(2)
ij Qi Qj +

∑
ijk

M(3)
ijk Qi Qj Qk + . . . , [9]

where
M(2)

ij =
〈

u(1)
i , u(1)

j

〉
M(3)

ijk =
〈

u(1)
i , u(2)

j

〉
δjk +

〈
u(2)
i , u(1)

j

〉
δik .

[10]

Here, u(k)
j is the strain field derived from the displacement field

d(k)
j induced by the image charges and δij is the Kronecker delta.

Note that no summation is implied in Eq. 10.
The matrixM(2), similar to the electrostatic analog M of Eq.

4, has a simple interpretation: It is a positive-definite matrix that
quantifies pair interactions between charges, taking into account
their relative position and the geometry of the domain. Similarly,
M(3) describes the interactions between triplets of charges, and
so on.

Calculating the interaction matrices M involves integration
of explicitly known expressions over the perforated domain.
One could attempt to analytically calculate these integrals under
some approximations (i.e., keeping only nearest-neighbor inter-
actions), which is the subject of future research. In this work,
to strictly test the elastic-charges approach and avoid additional
approximations, we evaluate the integrals numerically.

External Loading. In the electrostatic example above we dealt
with infinite systems where the external loading was imposed by a
bulk energetic term (Eext in Eq. 1). It is possible to include such a
term in the elastic theory too, but in this work we want to analyze
the case most commonly encountered in reality: a finite system
with displacement-controlled boundary conditions, as in Fig. 1.
This requires a different approach and there are a few ways
in which these boundary conditions can be introduced within
our formalism. We found that, in the context of the lattice–hole
geometry, imposing boundary conditions on the external edges is

most conveniently done by treating the boundary conditions as
constraints on the unknown charges Q.

As discussed above, the boundary conditions cannot be sat-
isfied exactly when expressing the relevant fields with a finite
number of charges. However, an approximate solution can be
obtained by demanding that the boundary conditions will be sat-
isfied on average in a particular region. Consider the geometry
of the system, depicted in Fig. 3: The top and bottom bound-
aries of the lattice are loaded by a rigid plate. The actual contact
points between the system and the loading mechanism are a
discrete set of ligaments, marked with arrows in Fig. 3. Focus-
ing on one of them, the average displacement on the boundary
is given by

d̄ =
∑
i

N (1)
i Qi +N (2)

i Qi
2 + · · · , [11]

whereN (i) can be expressed by explicit integration of Eq. 8 over
the ligament (SI Appendix, section 4). Imposing a given average
displacement on a set of ligaments translates to a collection of
nonlinear constraints on the charges, one for each ligament. That
is, the constraints on the charges are(∑

i

QiN (1)
ij +Qj

2N (2)
ij + · · ·

)
− dext

j = 0, [12]

where dext
j is the imposed displacement on the j th ligament and

N (i) is an N × c matrix. Here, c is the number of constraints
and N is the number of charge components, i.e., the length of
the vector Q.

In this formalism, finding the charges that best approximate
the boundary conditions amounts to minimizing the nonlinear
energy Eq. 9 under the nonlinear constraints of Eq. 12.

Results
Here we use the method of image quadrupoles to analyze three
situations, shown in Fig. 3: a square lattice and a triangular lat-
tice compressed along two different orientations. The square and
triangular lattices contain 81 and 77 holes, respectively, and are
characterized by their porosity, defined as the fractional area
of holes. Here we analyze systems with porosity that ranges
from p = 0.3 to p = 0.7 (the percolation limit is at p≈ 0.78 for
the square lattice and p≈ 0.90 for the triangular one). To test
the theory we compare our results with direct numeric simu-
lations of the full equations, which are known to agree very
well with experiments (6). In both analysis and simulations we
leave no fitting parameters, and we use the same elastic mod-
uli (Y = 1 is the 2D Young’s modulus and ν= 1/3 is the 2D
Poisson’s ratio).

Linear Response. We begin by analyzing the linear response of
the system under small displacements. In this limit, only the
leading-order contributions are considered. That is, we mini-
mize the quadratic energy E =

∑
ij M

(2)
ij Qi Qj under the set of

linear constraints
∑

j N
(1)
ij Qj = dext

i . This is a trivial exercise in
linear algebra, and the desired charges are given by (SI Appendix,
section 4)

Q∗=−M−1N
(
NTM−1N

)−1

dext, [13]

where for ease of notation we omitted the superscripts M≡
M(2) and N ≡N (1). With Q∗, the solution can be written in
terms of Eq. 8 and any property of interest can be extracted.
For example, the effective Young’s modulus Yeff can be easily
obtained in closed form; see derivation in SI Appendix, section
4A. In Fig. 4, Left column, we plot Yeff as function of poros-
ity, measuring the system’s compliance for uniaxial loads, i.e., its
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Fig. 4. Comparison between the elastic-charges calculation and a direct
fully nonlinear numerical solution in the linear regimes for three different
lattices. Left column shows the effective Young’s modulus as function of
porosity (blue for finite element, orange for elastic charges). Each point
represents the slope in the stress–strain curve of a system with the cor-
responding hole pattern and porosity. Center and Right columns show
representative fields of the σxy component of the stress-field distribution
plotted on top of the strained configurations with porosity p = 0.3.

effective spring constant. It is defined by the ratio of the aver-
age compressive stress to the compressive strain. Comparison to
direct numerical simulations shows that the formalism quanti-
tatively captures the coarse-grained response of the system. In
addition, in Fig. 4, Center and Right columns we plot the spa-
tial distribution of the shear stress field σxy for a representative
porosity and imposed strain, plotted on top of the deformed con-
figurations, showing a favorable agreement also in the detailed
spatial structure of the solution. We emphasize that the charge
formalism has no free parameters to fit.

A slight discrepancy in the deformation field is observed in
one orientation of the triangular lattice, as shown in Fig. 4, Bot-
tom row, reflecting the fact that quadrupolar charges cannot
fully describe the solution. To capture these details, higher-order
multipoles are needed.

Instability (Nonlinear Response). Encouraged by the success of the
image charge method in the linear regime, we now proceed to
study the nonlinear instability of the system. In particular, we are
interested in the critical strain at the onset of instability and the
unstable modes.

The stability of the system is determined by the Hessian of the
energy which in the linear response regime is simply 2M(2). It
is guaranteed to be positive definite and the system is thus sta-
ble. Expanding to the next order in dext, we find that the Hessian
reads

Hij = 2M(2)
ij +2Q∗k

[
M(3)

ijk +M(3)
ikj +M(3)

kij

]
, [14]

where no summation is intended on i and j . In addition, the
displacement constraints of Eq. 12 should also be corrected to

next-leading order. This technical calculation is done in detail in
SI Appendix, section 4B.

The charges in the linear solution, Q∗, are proportional to
the imposed displacement dext; cf. Eq. 13. This means that the
leading-order correction to the Hessian (the bracketed term in
Eq. 14), as well as the correction to the displacement constraints,
is also linear in dext. When the imposed displacement is large
enough, the constrained Hessian can become singular; i.e., one
of its eigenvalues can vanish. This is the onset of instability.

We note that this calculation is in line with the intuitive pic-
ture described above: For small loads (i.e., in the linear regime)
the dominant interaction is that of the charges with the external
loading and with themselves, quantified respectively byN (1) and
M(2). In this regime the solution is linear in dext and given by Eq.
13. It is stable becauseM(2) is positive definite. For larger loads,
the interaction of the induced charges with themselves, quanti-
fied byM(3), becomes important and eventually destabilizes the
linear solution.

Fig. 5, Left column shows the critical strain, i.e., the strain at
which the Hessian becomes singular, as a function of porosity for
the three different lattices. Our method is in good quantitative
agreement with the full numerical simulations, except possibly
at very low porosities. This happens because smaller porosities
lead to larger critical strains, making the image charge magni-
tudes larger. Because our method is a perturbative expansion in
the charge magnitude, its accuracy deteriorates when the charges
are large. This effect is more noticeable in the triangular lattices
(Fig. 5, Middle and Bottom rows).

For each lattice, we also plot the unstable eigenmode asso-
ciated with the vanishing eigenvalue. Representative ones are
plotted in Fig. 5, Center Left and Center Right columns. In two
of the three cases shown, the unstable modes computed with our
method agree with those found in finite-element simulations. In
the case shown in Fig. 5, Middle row, there is a discrepancy, which
might come as a surprise because the formalism properly identi-
fies the critical strain, i.e., the load where a specific eigenmode
becomes unstable, while the mode itself is not the right one.
A deeper investigation reveals that many eigenmodes become
unstable almost simultaneously, making it difficult to pinpoint
the least stable one. This is clearly seen in Fig. 5, Right column,
where at the onset of instability many eigenvalues are densely dis-
tributed close to the vanishing one. The zig-zag–like mode, like
the one predicted by finite-element simulations and by the inter-
acting quadrupole model of Fig. 2, also becomes unstable at a
similar strain. While we are still not sure about the precise origin
of this inconsistency, we suspect that it is rooted in the difficulty
of satisfying the boundary condition on the external boundary of
the solid, i.e., a finite-size effect.

Summary and Discussion
We introduced a formalism that identifies image elastic charges
as the basic degrees of freedom of perforated elastic metama-
terials. The continuum elastic problem, which contains multiple
boundary conditions, is reduced to a simpler problem of a lattice
of nonlinearly interacting elastic quadrupoles.

While the focus of our work is on 2D elastic metamaterials,
the concept of image charges is applicable in principle in any
dimension, although its implementation may be rather compli-
cated. For example, elastic charges are defined as singularities
of a curvature field. In 2D the curvature is a scalar, intro-
ducing a significant level of simplicity. In higher dimensions
curvature is no longer a scalar but a tensor, and in 3D elastic
charges are singularities of a second-rank tensor field (the ref-
erence Ricci curvature). Generalizing our theory to 3D elastic
metamaterials requires a classification of 3D elastic charges and
calculation of their resulting elastic fields, a subject of ongoing
research.
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Fig. 5. Comparison between the elastic-charges calculation and a direct fully nonlinear numerical solution at the onset of instability for three different
lattices. Left column plots the critical strain as function of porosity (orange for finite element, blue for elastic charges). Center Left and Center Right columns
show the unstable modes for the whole system and a close-up of the Center Left column, respectively (same color code as Left column). These are all with
porosity p = 0.7. Right column plots the eigenvalues as function of strain, demonstrating the formation of instability and the densely distributed vanishing
eigenvalues at the onset of instability.

A central advantage of the elastic-charges approach is its
conceptual aspect, in that it offers understanding and intuition
about the deformation patterns before making any calculation.
Both the linear response pattern and the buckled state can be
qualitatively understood easily, as well the instability mechanism.

In addition, we found very good quantitative agreement
between our theory and a detailed nonlinear finite-element anal-
ysis. This includes the effective Young’s modulus, the stress-field
distribution, the critical loads at the onset of instability, and the
unstable modes. While some of the approximations we made
are uncontrolled—namely truncating the multipolar expansion
at the quadrupolar order and placing image charges only in the
immediate vicinity of the finite solid as in Fig. 3—the quantitative
agreement between our approach and the exact numeric results
is a direct validation of our formalism, demonstrating a posteri-
ori that, at least for the analyzed cases, multipoles higher than
the quadrupoles may be neglected.

Finally, the charge formalism is also beneficial from a compu-
tational perspective, since it vastly reduces the number of degrees
of freedom in the problem. For a finite-element simulation to
be reliable, the mesh must contain at least a few dozen points
per hole. In the simulations reported in this work, a reasonable
accuracy demanded around 104 mesh points. The elastic charge
formalism, on the other hand, requires a handful of degrees of

freedom per hole. In the calculations reported here, we used the
number 5, leading to ∼102 degrees of freedom per lattice. All of
the charge method calculations in this work combined can be run
on a standard laptop within a matter of minutes.

However, we emphasize that in its present form, the model
cannot serve as an alternative to the detailed finite-element anal-
ysis. For example, while our theory correctly describes mechani-
cal properties prior to and at the onset of instability, it is not valid
beyond the instability: Since our theory expands the energy only
to third order, the postinstability energy does not have a min-
imum. Analyzing the postinstability response requires going to
the next order, with a quartic energy functional. Then, identify-
ing the energy-minimizing configuration corresponds to solving a
set of cubic algebraic equations for the unknown charges, a task
that we have found nontrivial and is a work in progress.

Looking forward, we suggest that this approach might open the
way for importing techniques and ideas from statistical mechan-
ics to the study of perforated elastic metamaterials. For example,
we are currently investigating the effect of structural disorder by
introducing randomness to the mechanical interactions between
the charges (i.e., randomness in the interaction matricesM and
N ). Another direction, for future work, would be coarse graining
the model to develop a field theory where the quadrupolariza-
tion is a continuous field. This would be the analog of dielectric

Bar-Sinai et al. PNAS | May 12, 2020 | vol. 117 | no. 19 | 10201

D
ow

nl
oa

de
d 

at
 C

/O
 R

E
A

D
M

O
R

E
 C

O
N

S
O

LI
D

A
T

IO
N

 o
n 

Ju
ne

 2
9,

 2
02

1 



materials described by distributing induced electric dipoles, but
with a richer response.

Theoretical and Finite-Elements Method. The commercial software
Abaqus/Standard was used for our FE simulations. Each mesh
was constructed using six-node, quadratic, plane-stress elements
(ABAQUS element type CPS6) and the accuracy was checked
by mesh refinement. The material was modeled as an isotropic
linear elastic material with 2D Poisson’s ratio ν= 0.3 and 2D
Young’s modulus Y = 1. In all our analyses the models were
loaded by imposing a displacement d ext to the two opposite
horizontal edges, while leaving the vertical one traction-free
(Fig. 3). To characterize the linear response, we conducted
a static analysis assuming small deformations (∗STATIC step
with NLGEOM=OFF in Abaqus) and defined Yeff as the slope

of the resulting stress–strain curve. To characterize the criti-
cal strain, we conducted a buckling analysis on the undeformed
configuration (∗BUCKLE step in Abaqus).

Data Availability. All numerical data discussed in this paper,
as well as a Mathematica notebook that contains a detailed
derivation of the theoretical results, are available to the
reader on GitHub at https://github.com/yohai/elastic charges
metamaterials.
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