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ABSTRACT: MicroRNAs (miRs) are small noncoding RNAs that
regulate gene expression and are emerging as powerful indicators of
diseases. MiRs are secreted in blood plasma and thus may report on
systemic aberrations at an early stage via liquid biopsy analysis. We present
a method for multiplexed single-molecule detection and quantification of a
selected panel of miRs. The proposed assay does not depend on
sequencing, requires less than 1 mL of blood, and provides fast results
by direct analysis of native, unamplified miRs. This is enabled by a novel
combination of compact spectral imaging and a machine learning-based
detection scheme that allows simultaneous multiplexed classification of
multiple miR targets per sample. The proposed end-to-end pipeline is
extremely time efficient and cost-effective. We benchmark our method with
synthetic mixtures of three target miRs, showcasing the ability to quantify and distinguish subtle ratio changes between miR targets.
KEYWORDS: spectral imaging, machine learning, circulating microRNA, single-molecule, cancer diagnostics

MicroRNAs (miRs) are evolutionarily conserved, 18−25
nucleotide-long noncoding RNAs that regulate the

translation of mRNA.1,2 MiRs regulate the transcription of up
to 60% of all human protein-coding genes and are therefore
crucial for cellular function.3 Aberrant miR levels reflect the
physiological state of cancer cells and correlate closely with
tumor origin and stage.4 Importantly, miRs are highly present in
circulation, are protected from RNases digestion by extracellular
vesicles or protein-binding, and are tightly related to onco-
genesis, making them promising candidates for biomarkers.5−9

Expression analyses of miRs circulating in blood emerge as
promising and complementing clinical tools for early molecular
diagnostics and follow-up.10 Relative expression-level signatures
of small panels consisting of <10 targets of carefully selected
miRs have significant diagnostic and prognostic power.7,11,12

Such disease-specific panels are already well established in the
literature7,13 and dedicated databases.14−16

However, current mainstream methodologies for quantifying
miR expression are neither optimized nor designed for the
simultaneous quantification of several miR targets.17−20 Stand-
ard methodologies for miR expression quantification, such as
quantitative reverse transcriptase polymerase chain reaction
(qRT-PCR), RNA sequencing (RNAseq), and microarrays,20

rely on PCR amplification for analysis. Due to their short
sequence length, miRs are not easily amplified by PCR,
introducing bias into such expression analysis.21,22 Each of
these methods has its drawbacks when quantifying small panels
of miRs: qRT-PCR has limited multiplexing capabilities such

that analyzing the expression of more than three miR targets
often requires extensive optimizations and validations and is
limited in sample throughput.23 Standard RNAseq requires
nonspecific sequencing of all small RNAs and therefore suffers
from long turnaround times and relatively high costs per target
when small panels of targets are needed. Furthermore, due to the
large abundance variation between miR targets in body fluids,24

deep sequencing is required for expression profiling of rare miRs.
Microarrays are good for multiplexing a large number of targets
at relatively low costs but suffer from low sensitivity and
specificity and are difficult to use for absolute quantifica-
tion.19,25−27

Native miR detection mitigates these biases and is currently
possible with the commercial NanoString system;28 however,
this solution is more suitable for panels consisting of hundreds of
miRs and is generally excessive and expensive for panels of
several miRs of interest.29

Recent studies have demonstrated the capability to optically
detect miRs at single-molecule resolutions.30−33 Nevertheless,
their multiplexing capabilities are currently limited to two miR
targets simultaneously. In clinical applications, such as
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diagnostics and follow-up, there is a need to evaluate miR panels
consisting of multiple targets in a fast, cost-effective, and
sensitive manner.

Here, we introduce our method, miR Analysis by spectral
Classification LEarning (miRACLE), a method for multiplexed
single-molecule detection and profiling designed for small
panels of up to 11 disease-associated miRs.

The miRACLE’s pipeline combines four key components that
will be presented in the following section: (i) capturing targeted
miRs by complementary DNA probes labeled with a distinct
fluorophore pair; (ii) specific miR targets immobilization using
anti-RNA/DNA hybrid antibody34 and subsequent washing of
excess probes and background; (iii) compact spectral imaging
using CoCoS microscopy;35 and (iv) a dedicated image

Figure 1.MiRACLE scheme: (A) total RNA is extracted from plasma samples, and only the selected miR targets are specifically hybridized with DNA
capture-reporter probes. Each reporter has a unique fluorophore-pair combination (fluorophores names are displayed to the left, Alexa Fluor�AF).
(B) Hybridized target miR: reporter DNA complexes are selectively captured on a glass surface by an Anti-DNA-RNA hybrid [S9.6] antibody, while all
excess probes and molecules are washed away. The glass antibody surfaces are prepared in-house using biotin−streptavidin binding and PEG
passivation. (C) Captured targets are then imaged using a compact spectral imaging microscope module (CoCoS), which allows the capture of all
fluorescent probes in the FOV with a single frame (top). The miRs are classified according to the distinctive spectral signature of each reporter’s
fluorophore-pair (the fluorophores’ identities are depicted at the bottom of each colored box on the left), which can be simulated (left) with varying
Gaussian noise distributions (induced Gaussian noise variance is depicted at the bottom) to a high extent of resemblance with the real data (right). The
expected distance between peaks is displayed to the right. All crops are presented with the same brightness and contrast settings.
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processing tool for detection and classification of all miR targets
at single-molecule sensitivity.

■ RESULTS AND DISCUSSION
The first goal in our miRACLE pipeline is to isolate and quantify
only the miR targets relevant for a disease-specific diagnosis.
This focused detection allows for increasing the signal-to-noise
ratio (SNR) by reducing the background noise, enhancing the
dynamic range of the method, and reducing the experimental
costs (see Table S1). This goal is achieved in two sequential
steps. First, specific miR targets are captured and tagged using
DNA capture-reporter probes composed of ∼30 bp long
sequences and labeled with unique combinations of two
fluorophores. These probes are designed to complement specific
miR targets (Figure 1A), offering target recognition specificity
with single nucleotide sensitivity.31,33 Thus, upon hybridization
with their targets, each miR has a unique spectral signature
acting as a “spectral barcode” that discloses their identity. When
required, the target recognition specificity can be further
improved by implementing locked nucleic acids in the probe
design.30,36

In the following step, we use selective capturing and
immobilization of the DNA/RNA hybrids to isolate the targets
from the nonhybridized probes and any autofluorescing
molecules in the RNA extract. DNA/RNA hybrids that
correspond to hybridized miR targets are specifically captured
on microscope coverslips functionalized with a monoclonal
Anti-DNA-RNA hybrid [S9.6] antibody,31,34 allowing for the
selective imaging of only the target miRs (Figure 1B). After the
miR-reporter constructs are captured on the surface, subsequent
washes remove all excess unhybridized reporter probes, thus
significantly reducing background noise. This capture process
eliminates the nonspecific binding of reporter probes, as was
thoroughly validated previously31,34 and in control experiments
(see Figures S1−S4). As a result, this approach enables a
sensitive readout of the relevant targets.

In order to validate the miRACLE concept, we used three
synthetic miR targets at physiological concentrations37 and their
corresponding DNA probes (sequences are provided in
Supporting Information note 2). First, we hybridized the three
miRs each with their complementary probes and immobilized
them separately on three different surfaces. These experiments
provided a data set of distinguished probes for training the
imaging, detection, and classification process. Next, we
hybridized the three probes in two separate mixtures containing
all three miR targets. The mixed samples were mixed together at
volume ratios of 1:1:1 and 2:5:3 for miR-15b-5p/miR-155-5p/
miR-126-3p, respectively. These mixture experiments are used
to benchmark the miRACLE pipeline.

The third step in the miRACLE process is reading out the
spectral barcodes of the miR targets. To this end, the surface-
immobilized miR/reporter hybrids with their unique fluoro-
phore-pair combinations are imaged and resolved by
miRACLE’s compact spectral imaging module based on the
previously introduced CoCoS system.35 Importantly, the two
fluorophores on each probe are positioned at distances much
smaller than the diffraction limit (all probes are ∼30 bp in
length, which are equivalent to ∼10 nm) and therefore are
captured in the image at the same physical location. To
distinguish between the overlapping fluorophores, we spectrally
disperse them using two prisms (Figure 1C top), slightly shifting
their image position according to their spectra (Figure S5) into a
combined intensity distribution on the camera’s sensor (see

Figure S6 for the experimental dispersion curve converting
emission wavelength to pixel displacement on the camera
sensor). This results in a spectral image where the combinations
of fluorophore colors are converted to unique dual-spot point-
spread function (PSF) with their interspot distance indicative of
their color combination (Figure 1C bottom). CoCoS allows to
symmetrically rotate the prisms along the optical axis of the
fluorescence emission path, offering easy control over the
spectral dispersion introduced to the image (see ref 35).
Therefore, the spectral resolution is optimized for each panel of
reporter probes according to its fluorophore-pairs and multi-
plexing needs to establish the best throughput and SNR.
Optimizing the spectral dispersion enables the multiplexed
registration of single-molecule miRs.

Using CoCoS, all targets are imaged simultaneously in a single
frame acquisition per field-of-view (FOV, ∼130 × 130 μm2),
reducing sample acquisition time by a factor of the number of
fluorophores used and eliminating cross-color photobleaching
by consecutive excitations. Importantly, spectral registration
allows expanding the palette of fluorophore options available for
reporter tagging and also eliminates cross-talk between color
channels and the need for color channel alignment and
registration. In miRACLE, each FOV contains hundreds of
miRs, each detected as a unique two-spot diffraction-limited PSF
corresponding to the spectral emission signature of its
fluorophore-pair (Figure 1C). The unique interspot distances
and their intensity distribution enable the classification of
spectral PSFs and consequently facilitate visual differentiation
between the target miRs. To guarantee miRACLE’s ability to
multiplex and classify different miR targets, we designed a simple
PSF simulator in Matlab (Figure 1C bottom). The simulator
input is composed of the fluorophores’ and filter’s spectra
together with the induced spectral dispersion by CoCoS
(Figures S5 and S6). It then simulates the spectral PSFs with
an option of adding Gaussian and Poisson noises, which
provides a more realistic assessment of our probe classification
capability.

The PSF simulator allowed us to input various dual-
fluorophore combinations and examine their induced spectral
PSF on our system. This tool enabled us to visually inspect the
outcome of different fluorophore combinations (Figure S7) and
assess the number of spots and distances in their induced
spectral PSFs’ (selection of fluorophores, which emit in multiple
spectral windows of our multiband filter, can create three and
four spots intensity distributions, as shown in Figure S8). The
main contribution of the simulator to miRACLE’s pipeline is the
potential discovery of distinguishable fluorophore-pair combi-
nations for the maximal multiplexing capability. Choosing
fluorophore-pairs that give unique distances between PSFs’
spots and visually distinguishable intensity distributions allows
one to maximize the number of probes that can be
simultaneously classified in a single sample. With a crude visual
inspection of the simulator results of hundreds of fluorophore
combinations (Figure S7), we were able to assemble 11
fluorophore-pairs combinations that have distinguishable PSFs
and interspot distances. These fluorophore-pairs could poten-
tially allow simultaneous classification of up to 11 miR targets in
a single snapshot, with the same spectral resolution and with
realistic SNRs (Figure S8 and Table S2). On the other hand, the
PSF simulator also allows one to find the optimal experimental
setting for a specific experiment with a set probe panel,
optimizing the inherent trade-off between spectral resolution,
SNR, and the maximal miR density. By visually inspecting the
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output PSFs, the users can find the optimal spectral resolution
and fluorophore-pair combinations according to the exper-
imentally required number of miR targets.

As shown in Figure 1C, the PSF simulator results closely
resemble the experimental PSF extracted from three different

experiments, each imaging a single miR target at a time. The
simulated and experimentally calculated interspot distances are
in exact agreement, although the intensity distribution between
spots differs slightly due to axial focal point chromatic
aberrations that were unaccounted for in the simulations.

Figure 2.Automated multiplexed miR detection and classification at single-molecule resolution. (A) Before detecting and classifying the probe’s PSFs,
three steps of image preprocessing are performed. First, using a multi-FOV stack, we calculate and subtract the pixel-wise median value from the raw
images to remove the constant excitation background. Next, we further process the images to enhance the signal by using the deep learning-based
Noise2Void (N2V) algorithm. (B) Denoised images are input to the ThunderSTORM (TS) localization plugin to detect all Gaussian spots and to crop
24 × 10 pixels rectangles around each Gaussian spot for further analysis (example crops are shown on the right). (C) Single miR-type samples are used
for generating a training set for the automatic classifier. A small subset of ∼1000 crops are visually inspected by a user in V-TIMDER, a dedicated
graphical user interface. The user visually tags each crop as a valid miR PSF or as noise. (D) Tagged crops gathered from three single miR-type samples
are computationally mixed and used for training a machine-learning classifier model using SVM combined with PCA. The classifier is used to
automatically classify mixed miR samples according to their PSFs: three different miR types (orange, green, and blue) or noise (yellow). Scale bars on
FOV images in parts B and D are 30 μm.
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After image acquisition, the miRACLE pipeline proceeds with
automatic analysis of the entire image data set with the aim of
detecting, identifying, and quantifying the single-molecule
distributions of miR targets.

First, the raw image stacks are preprocessed to enhance the
SNR for subsequent single-molecule detection and classification
(Figure 2A). The preprocessing protocol includes a standard
background subtraction method utilizing a pixel-median
calculation across the entire multi-FOV stack to eliminate
spatial background dependencies. Subsequently, a deep
learning-based technique known as Noise2Void (N2V)38

denoising is applied (see Methods and Table S3 for details),
which effectively eliminates local zero-mean noise and further
improves the quality of the single-molecule PSFs. This
preprocessing workflow ensures optimal data quality and

enhances the accuracy of the subsequent analysis and
interpretation.

Next, to extract the relevant PSF data from the full FOV
images, a cropping process is employed. This involves the
localization of all two-dimensional diffraction-limited Gaussian
shapes within the images using the ImageJ’s ThunderSTORM
(TS) plugin39 (see Methods and Table S4 for details).
Subsequently, a rectangular region measuring 24 × 10 pixels is
cropped around each localization (Figure 2B). To ensure the
optimal performance without compromising recall, the TS
localization threshold is set as low as possible while excluding
single-pixel localizations. It is noteworthy that since our spectral
PSFs comprise two diffraction-limited Gaussian spots, the TS
plugin detects each probe twice and thus rectangles are cropped
around both the lower and upper spots. However, for

Figure 3. Experimental classification results. (A) Absolute count distributions of single miR-type samples automatically classified from 241 (miR 15b),
324 (miR 155), and 303 (miR 126) FOVs. The distributions show minimal cross-assignment of the classifier between miR types. Each panel shows the
classified miR type for all crops taken from a sample containing only the type specified in the legend. (B) Confusion matrix for a mixed 1:1:1 miR
sample (counted in 10 FOVs). The matrix compares the visually determined label to the automated classifier prediction. The matrix is predominantly
diagonal, showing most classifier errors to be false noise classification and very little cross assignment between miR types. The precision and recall
metrics are summarized for each class in the confusion matrix. (C) Precision and recall of each miR type as a function of the classification probability
threshold. The area under the precision recall curve (AUC-PR) for the classification of each miR type is indicated in parentheses. Circles correspond to
the precision and recall calculated from the confusion matrix in (B). (D) Determining the ratio of miR targets in an “unknown” synthetic mixed sample.
The three synthetic miRs were mixed in a 2:5:3 ratio and were classified without supervision, and systematic errors were corrected by using the
confusion matrix in panel (B). We were able to correctly resolve the underlying ratios of miRs (circles, total of 63,493 classified crops in 630 FOVs).
The error bars represent the uncertainty of a 95% confidence interval. Diamonds represent the calculated ratio for a small subset of visually labeled
crops (519 classified miR crops in five FOVs, ∼0.82% of the full data set).
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downstream analysis, only the upper crop is pertinent as it
encompasses the complete double-spot PSF (Figure 2B,
rightmost crop examples). Consequently, it is anticipated that
at least 50% of the generated crops will be classified as non-miR
“noise”.

Finally, the crop classification and miR target expression
profile reconstruction are performed by using an automated
pipeline based on principal component analysis (PCA) and
support vector machine (SVM) machine-learning. The PCA−
SVM model takes crops as an input and assigns them to one of
the three miR types, or categorizes them as noise when they do
not exhibit a strong correspondence with any of the miR probes
(see Methods and Table S5 for details). To train our model,
small subsets containing ∼1500 crops from each of the three
single miR species data sets were manually curated using Visual
Tagging Interface for Machine-learning DEcision Refining (V-
TIMDER), a custom Graphical User Interface (GUI) tool for
PSF labeling. V-TIMDER enables users to visually label the
crops as either “noise” or the relevant miR PSF, generating a
labeled data set for the supervised machine-learning classifier. It
provides various features that facilitate the users’ PSF
classification, such as plotting the expected PSF image and
overlaying the expected spots’ locations on the crop for easy
visual comparison (Figure 2C top left, detailed interface
description in Figure S9). The labeled results from V-TIMDER
serve as training data for the automated PCA−SVM classifier,
capable of classifying millions of crops from diverse miR
distributions and mixtures (Figure 2C bottom).

To validate the results of the automated classifier on mixed
samples, V-TIMDER was further adjusted to allow visual
classification of such samples (Figure S9). In this “mixture”
mode, rather than the binary choice between miR or noise for
each crop as in the single-species case, the user has the flexibility
to assign each crop to one of the three PSF types or classify it as
noise.

The classified results are compiled to obtain the miR count
distributions, which can be utilized for downstream analysis and
future diagnostic applications. To benchmark the classifier
performance, we analyzed the three different samples of a single
miR-species individually, demonstrating the accurate classifica-
tion capability of the automated classifier with minimal
confusion among miR types (Figure 3A). Subsequently, we
investigated two mixtures of the three miRs with ratios of 1:1:1
and 2:5:3 (miR-15b-5p, miR-155-5p, and miR-126-3p,
respectively). To evaluate the classifier’s recall and precision
capabilities, we utilized V-TIMDER to visually assess a small
subset of crops taken from the 1:1:1 mixture’s data set (4064
visually labeled crops out of 197,963 classified crops). The
labeled data were used as a test set to benchmark the
performance of the automatic classifier on mixed samples.
Comparison of visually labeled and classifier’s results is
summarized with the confusion matrix in Figure 3B. The
precision and recall for each miR type were evaluated from the
matrix (marginals in Figure 3B and circles in Figure 3C).
Evidently, the classifier predominately confounds between noise
and the different classes and hardly mixes between miR types,
allowing us to evaluate the performance of the classifier for each
miR independently by performing a binary classification (see the
Methods section) and obtaining precision-recall (PR) curves
(Figure 3C). The PR curves and their corresponding area under
the curve (AUC-PR)40 demonstrate a varying classification
performance between miR targets, with the best performance for
miR-15b-5p which has a more distinguished PSF. Essentially,

the confusion matrix for the 1:1:1 mixture encompasses all the
systematic classification errors. Thus, we use this equidistributed
sample to correct our ratiometric readout for various
experimental contributions such as different initial single-species
concentrations (visible in Figure 3A), competitive binding
effects which are known to affect the measured ratios,31 and
minute PSF differences between the single-species and mixtures
experiments due to the experimental focal changes (Figures
3A,B and S10 and S11). Since these physical effects skew the
count distribution ratio in a constant manner, we can normalize
the observed count distributions to estimate the true miR target
ratios. By employing the inverted row-normalized confusion
matrix on the classifier results and normalizing the result with
the 1:1:1 absolute count distribution, we can effectively correct
all inherent physical and classifier errors, obtaining a more
precise representation of the miR mixtures’ underlying ratios
(see the Methods section for details). We demonstrate this on a
different mixture with a 2:5:3 ratio retrieving a very close result
of a 2.10:4.95:2.95 ratio with our pipeline (Figure 3D). The
confusion matrix also allows for assessing the overall errors of
our pipeline (see the Methods section for details). Since the
confusion matrix values are discrete measurements, we assumed
that they have a multinomial noise distribution around the
observed values (depicted in Figure 3B), allowing us to generate
multiple confusion matrices and determine the miR ratio’s
confidence bounds (Figure 3D, error bars correspond to two
standard deviations or 95% of possible results. Further details are
given in the Methods section). The evaluated ratio errors
correspond well to the ratio results of a V-TIMDER visual
classification benchmark test on a small subset of crops taken
from the full data set (1565 crops out of 214,231 crops in the
2:5:3 data set, out of which 519 were visually assigned to one of
the miR classes, and the rest were classified as noise). From this
analysis, the dominant uncertainty in estimating the ratio
distribution arises from misclassifications of miRs 126 and 155,
while miR 15b is better classified in our model (see Figure S12
for the full distributions of simulated ratios). Nevertheless,
according to this uncertainty estimation, in the worst-case
scenario, we expect to distinguish between variations larger than
10% in mixture abundance ratios (Figure S12). It should be
noted, however, that other error sources might be present and
are not modeled by this analysis.

■ CONCLUSIONS
Overall, our results demonstrate the capability of confidently
detecting and reconstructing mixture distributions of three miR
types simultaneously. Our simulations show that the method
could be easily expanded to multiplex up to 11 types of miRs
(Figure S8). MiRACLE’s multiplexing capabilities could be
further enhanced by introducing 3- and 4-fluorophores probes,
allowing us to combinatorically increase the uniquely resolvable
spectral PSFs that can be classified by miRACLE [see Figure S13
showcasing 10 unique PSFs with only four fluorophore
combinations, demonstrated using 100 nm colored silica
beads (SBs)]. MiRacle provides single-molecule detection
capability of unamplified miR targets with ultimate sensitivity.
The method is fast, sensitive, and extremely cost-effective (<$4
per sample, Table S1), paving the way to robust profiling of small
clinical panels of native miR and other RNA targets (see Figure
S14 for a demonstration of multiplexed detection of two miR
targets in RNA extracted from human plasma). Finally, the V-
TIMDER tool developed here for visual spectral PSF
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classification could be readily implemented in a wider context of
single-molecule applications involving PSF engineering.41

■ METHODS
Slide Preparation. The miRs were captured on borosilicate glass

coverslips (D 263 Schott glass, 75.5 × 25.5 mm2, ibidi GmbH,
Germany), passivated with poly ethylene glycol (PEG). In brief, after
cleaning, each coverslip was hydroxyl terminated with freshly prepared
KOH. The coverslip was then pegylated with a mixture of Methoxy
PEG Silane (mPEG-Silane MW5000, Laysan Bio Inc. AL, USA) and
Biotin-PEG-Silane- (Biotin-PEG-Silane MW5000, Laysan Bio Inc. AL,
USA) in a 1:100 stoichiometry in dehydrated HPLC grade ethanol. A
six-channel ibidi sticky-slide (μ-Slide VI 0.4, ibidi GmbH, Germany)
was mounted on top of the pegylated coverslip. Each channel was
hydrated with 100 μL of DNase I and RNase-free deionized water for 15
min and then equilibrated with 100 μL of PBS for 30 min. Following
this, each channel was activated with 100 μL of 1 nM monoclonal Anti-
DNA-RNA hybrid S9.6 antibody diluted in PBS (S9.6, Mouse IgG2a
kappa Isotype, conjugated with streptavidin, Ab01137−2.0, Absolute
Antibody, Oxford, UK) to capture our targeted biomarkers. Following a
1 hour incubation with the antibody at room temperature, the channels
were washed repeatedly with PBS to remove all excess unbound
antibody. Thus, prepared channels were able to capture targeted miRs
hybridized with labeled DNA probes as the DNA/RNA duplex (see the
Supporting Information for details of the cleaning and passivation
process).
Synthetic miR Experiments. In all experiments with synthetic

miRs and their complementary single-stranded DNA capture probes,
100 μL of the duplex at 50 pM concentration was used in each channel,
which was preincubated with S9.6 antibody. After hybridization, a total
of 31 μL of miR mixture was applied on the immobilized S9.6 antibody
in one channel, incubated for 45 min, and washed 3× with PBS before
imaging.
Human Plasma Experiments. All small RNAs (including miRs)

were purified from 500 μL of plasma using the miRNeasy Serum/
Plasma Advanced Kit (QIAGEN GmbH, Hilden, Germany) in 15 μL of
Rnase free water and stored at −20 °C. 15 μL of PBS was added to the
purified RNA extract, following 0.1 fmol (1 μL of 5 pM) of miR-155-5p
and miR-15b-5p capture probes (Figure 1C). The solution was left for 3
h hybridization at room temperature. After hybridization, a total of 31
μL of the solution was applied onto the preimmobilized S9.6 antibody
slide, incubated for 45 min, and washed three times with PBS before
imaging (results are shown in Figure S14).
Multicolor SB Experiment. For each combination of fluorescent

colors presented in Figure S13, a 5 μL of 100 nm SB functionalized with
azide (Si100-AZ-1, Nanocs, NY, USA) was added to 100 μL of 1:1
ddH2O/ethanol solution and vortexed thoroughly. We then added to
the solutions 0.2 μL of 10 mM AF-405, AF-488, AF-568, AF-647
DBCO conjugated dyes (AF647-DBCO, AF488-DBCO, AF405-

DBCO, Jena Bioscience, Germany; AFDye 568-DBCO, Click
Chemistry Tools, USA) according to the required combination of
colors, followed by vigorous pipetting and vortex for creating
homogenized distribution. The solution was left to incubate for 3 h
at 37 °C after which the beads were cleaned from residual-free
fluorophores by the following steps:

1. Centrifuging at 17,000 rpm at 4 °C for 15−30 min (or until a
pellet is visible at the bottom of the tube. The pellet should be
colored according to the dye used).

2. Gently removing the liquid while avoiding disturbing the pellet.
3. Adding 100 μL of 1:1 ddH2O/ethanol, pipetting vigorously, and

vortexing for homogeneous distribution.
4. Repeating steps 1−3 four times. At the last repeat avoid step 3

and instead proceeding to step 5.
5. Suspending the washed pellet in 30 μL of ddH2O to obtain stock

colored SB.
The stock solution was diluted 1:100 in ddH2O before imaging.
Optical Setup. The optical setup was previously described

elsewhere35 and is given here for the sake of completeness.
Excitation. For excitation, we used three lasers (Cobolt AB, Sweden)

with wavelengths 488 nm (MLD 488, 200 mW max power), 561 nm
(Jive 561, 500 mW max power), and 638 nm (MLD 638, 140 mW max
power). All lasers were mounted on an in-house designed heatsink that
coarse aligned their beam heights. Each laser beam was passed through
a cleanup filter (LL01−488−12.5, LL01−561−12.5, LL01−638−12.5,
Semrock, USA) and expanded to 12.5−20× its original diameter (3 ×
LB1157-A, 3 × LB1437-A, Thorlabs, USA). A motorized shutter
(SH05, Thorlabs, USA) was used for modulating on/off the solid-state
561 nm laser, while the diode lasers were modulated directly on the
laser head. The beams were then combined into a single beam using
long-pass filters (Di03-R488-t1−25.4D, Di03-R561-t1−25.4D, Sem-
rock, USA). To homogenize the excitation profile of the sample, the
combined beam was passed through an identical setup to the one
described in the work of Douglass et al.42 In short, the combined beam
was injected into a compressing telescope (AC254−150-A-ML,
AC254−050-A-ML, Thorlabs, USA) with a rotating diffuser (24−
00066, Süss MicroOptics SA, Switzerland) placed ∼5 mm before the
shared focal points of the telescope lenses. A series of six silver mirrors
(PF10−03-P01, Thorlabs, USA) was then used to align the beam into a
modified microscope frame (IX81, Olympus, Japan), through two
identical microlense arrays (2 × MLA, 18−00201, Süss MicroOptics
SA, Switzerland) separated by a distance equal to the microlense focal
length and placed inside the microscope frame. The homogenized beam
was reflected onto the objective lens (UPlanXApo 60X NA1.42,
Olympus, Japan) by a four-band multichroic mirror (Di03-R405/488/
532/635, Semrock, USA). The sample was placed on top of a motorized
XYZ stage (MS-2000, ASI, USA) with an 890 nm light-emitting diode-
based autofocus system (CRISP, ASI, USA), which enabled scanning
through multiple fields of view.

Table 1. Image Acquisition Parametersa

experimental target excitation RPA emission filter exposure time (ms) laser intensities at laser output

synthetic miRs all lasers simultaneously 177.5 FF01−440/521/607/694/809−25 800 638 laser−90 mW
561 laser−90 mW
488 laser−160 mW

colored 100 nm SB all lasers simultaneously 178 NF03−405/488/561/635E-25 250 638 laser−30 mW
561 laser−10 mW
488 laser−40 mW
405 laser−60 mW

sequential laser excitation 178 NF03−405/488/561/635E-25 250 638 laser−30 mW
561 laser−10 mW
488 laser−40 mW
405 laser−60 mW

aRPA�relative prism angle.
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Emission. The emitted fluorescence light was gathered by the same
objective and transmitted through the multichroic mirror onto a
standard Olympus tube lens to create an intermediate image at the exit
of the microscope frame. This image was passed through a multiband
emission filter (FF01−440/521/607/694/809−25, Semrock, USA)
and was then directed into a magnifying telescope (Apo-Rodagon-N
105 mm, Qioptiq GmbH, Germany and Olympus’ wide field tube lens
with 180 mm focal length, #36−401, Edmund Optics, USA), with two
commercial direct vision prisms (117,240, Equascience, France) placed
within the infinity space between the lenses and mounted on two
motorized rotators (8MR190−2−28, Altechna UAB, Lithuania)
controlling the prisms’ angles around the optical axis. The final image
was acquired on a back illuminated sCMOS camera (Prime BSI,
Teledyne Photometrics, USA).

Image acquisition was coordinated using micromanager software,43

controlling camera acquisition, laser excitation, XY stage location, and
prism rotator angles. The camera and laser excitation were
synchronized using an in-house-built TTL controller based on an
Arduino Uno board (Arduino AG, Italy).
Image Acquisition. The sample lanes were scanned laterally and

imaged with a single acquisition per FOV, obtaining ∼2000 FOVs per
sample. The different fluorophores used in our probe designs have
different photophysical properties, effecting their overall brightness.
Therefore, since all lasers excite the probes simultaneously, we adjusted
individual laser intensities to achieve homogeneous intensity profiles of
the probes’ PSFs.

For imaging, we used a single exposure per FOV with a relatively long
exposure time (800 ms per frame) compared to standard multiframe
fluorescence imaging (30−100 ms per frame). However, this long
exposure did not contribute to extensive photobleaching as excitation
power was distributed over a large field of illumination (130 × 130
μm2), resulting in relatively low irradiation at the sample (∼0.2 kW/
cm2). Furthermore, even if a fluorophore did bleach during the single-
frame acquisition, its signal was still recorded during this exposure,
resulting in optimized probe detection and SNR.

The same optimization was performed in the colored SB experiment
using lower laser powers to excite the higher fluorophore densities
found on the beads. The acquisition parameters are described in Table
1.
Image Processing. The image processing scheme used for

generating miR distributions from the raw dispersed images was
divided into four subprocesses: (i) image preprocessing, (ii) PSF
detection, (iii) PSF visual labeling with V-TIMDER for training the
automatic classifier, and (iv) automatic PSF classification.
Image Pre-Processing. Before the miRs were analyzed, the images

were processed in the following way in order to improve the SNR:

1. First, the inhomogeneous background in each FOV was
removed by subtracting a pixel-wise median calculated across
all FOVs in the experiment.

2. Outlying FOVs were pruned based on a rough statistical
measure: keeping only the FOVs whose mean of the (median-
subtracted) positive pixels and the mean of the negative pixels
are smaller in absolute value than some threshold. This filters out
FOVs with extreme features such as bubbles, and FOVs with a
background that did not agree with the median. The threshold is
chosen so about 80% of the FOVs are kept.

3. We then used Noise2Void (N2V), a self-supervised deep
learning algorithm to denoise the images and improve the SNR.
The main assumption of the algorithm is that the noise is pixel-
wise independent, an assumption that holds for the pruned,
median-subtracted images. The hyperparameters for the N2V
model are detailed in the Supporting Information (Table S3).

PSF Detection.

1. We used FIJI’s ThunderSTORM plugin39 to find blobs (peaks)
in the denoised images. This provides the x,y coordinates of each
blob in each FOV. The thresholds were selected such that all the
top blobs of all miRs in the image were detected, in addition to
“noise blobs” which are blobs that are not part of a miR, or the

bottom blob of a miR. Threshold selection was carried out based
on thorough visual inspection of a few randomly selected FOVs.

2. We then merged blobs that are very close to each other in the
same FOV into a single blob at their mean position. The distance
threshold below which blobs are merged is significantly smaller
than the distance between miRs. Blobs very close to the FOV
boundary were discarded.

3. We took rectangular crops around each blob in both the noisy
(median-subtracted) and denoised images. The dimensions of
the crops, 24 × 10 pixels, were selected such that both top and
bottom blobs appear in each miR crop. For more details, see
note 6 in the Supporting Information.

Visual PSF Labeling Using V-TIMDER.
1. To empirically estimate each miR’s PSF from the data (Figure

S15), we calculated the pixel-wise median of the single miR
species over ∼105 noisy crops. These empirical PSFs have an
excellent SNR with two distinct blobs.

2. To generate training, validation, and test data sets for our
machine-learning model, we randomly choose a few thousands
of blobs taken from a small (∼5−10) number of FOVs. For
these blobs, in addition to the standard crops, larger crops (×2
and ×10 the standard crop size, see Figures S9 and S15) from
both the noisy and denoised images are taken to provide a better
visual context of the blobs. We feed this ensemble of crops, as
well as the empirical PSFs to V-TIMDER, a custom-built GUI
that allows convenient visual classification of the crops. This
GUI has two modes: a “binary” mode where the user needs to
determine for each blob whether it is the top blob of a miR or
not, and a “mixture” mode where the user also determines which
miR species it belongs to. The binary mode is used for the single-
species data sets, and the mixture mode is used for the mixture
data sets. In this work, we visually classified 1701 (miR 15b),
1783 (miR 155), and 1795 (miR 126) crops from the single-
species data sets, and another 4064 and 1565 crops were
classified from the 1:1:1 and 2:5:3 mixtures, respectively.

Automatic PSF Classification Using Machine Learning. The full
classifier pipeline is provided in Figure S16

1. Classifier training and validation: for the training process, we
used 90% of the denoised crops from the single-species visually
labeled data set. The remaining 10% were used for model
validation, obtaining metrics of the classifier performance and
hyperparameter tuning. The training was carried out for both
classifier’s modules with preceding data augmentation and
preprocessing steps:

a. Data augmentation: the training data set was augmented
by adding multiple realizations of a weak random pixel-
wise Gaussian noise to each denoised crop labeled as miR
(see Figure S17 for example augmentations and Table S5
for details). We found this step to be crucial for the
classifier’s success. This also increased our training data
set size by a factor of 3.

b. Crops preprocessing: all crops were preprocessed by the
following pipeline:

i. Background subtraction: for each denoised crop,
subtract the median of the pixels at the crop edges.
If this causes any of the four central pixels of the
top blob to become negative, discard the crop.
Otherwise, replace negative pixels with zero
values.

ii. Normalization: normalize each crop by a factor k
such that the four central pixels of the top blob
have a mean of 1 (see Table S5 for details). The
normalization constant k is saved for future use
(item d below).

iii. Symmetrization: add the horizontally flipped
mirror image of the crop to itself. This produces
a symmetrical crop. We keep only the right half,
reducing the crop size from 240 pixels to 120.
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c. Unsupervised PCA training: the preprocessed symme-
trized crops from the single-species visually labeled data
set were fed into an unsupervised PCA training
procedure, extracting the 20 most significant compo-
nents characterizing the data set to be later used for
dimensionality reduction (see Figure S18 for learnt PCA
components).

d. Preprocessing before SVM classification: the symme-
trized crops together with their saved k factor were
further processed before being fed to the SVM classifier:

i. Dimensionality reduction: project the symme-
trized crop on the learnt 20 PCA components to
obtain 20 coefficients.

ii. Standardization: normalize the 20 coefficients as
well as k to have a zero mean and a unit variance.

e. SVM training: the visually labeled single-species data
sets’ standardized PCA coefficients, k values, and labels
were fed to a RBF-kernel SVM classifier44,45 (see Table
S5 for classifier’s details). The classifier chooses between
four classes, representing the three miR species and a
noise class for crops that do not contain a miR (either the
bottom spot in a miR or a false detection from
ThunderSTORM). The resulting SVM model was
saved for further use.

f. SVM classification: for the validation and test data, the
learnt SVM model was directly applied on the stand-
ardized PCA coefficients and k values to provide
classification. The final classification by the classifier
can be carried out in two ways:

i. Classification using Scikit-Learn’s predict meth-
od,46 which returns the predicted class. This
method was used for all practical purposes
including training, validation, testing, and classify-
ing (as displayed in Figures 3A,B,D, S19 and S20).

ii. Probability prediction using Scikit-Learn’s pre-
dict_proba method,47 which returns a probability
vector of length four, describing the model’s
estimation of the probability that the crop belongs
to each of the classes. This method was used to
generate the PR curves (Figure 3C).

g. Validation: the performance of the trained model was
validated on 10% of the labeled data set (see the
confusion matrix in Figure S19). The validation crops
processing was performed according to steps b and d.

2. Deployment: The 1:1:1 and the 2:5:3 mixture data sets, as well
as the unlabeled subsets of the three single-species data sets,
were fed through the above pipeline (steps 1b, 1d, and 1f) for the
purposes of calibration and testing, as detailed below.

Precision and Recall. We use the labeled subset of the 1:1:1
mixture both for evaluating the model’s performance (with respect to
the V-TIMDER true labels) and for calibrating the classifier. Using the
classifier on this subset, we obtain a 4 × 4 confusion matrix Cij (Figure
3B) whose entries are the number of blobs whose true label (according
to V-TIMDER) is i and were predicted to be in class j. The matrix C is
used for both performance evaluation and model calibration.

The recall for class i, ri is the fraction of the true occurrences of this
class that were correctly detected, ri = Cii/∑jCij. Similarly, the precision
pj the fraction of blobs classified as class j, whose true class is indeed
class j, is pj =Cjj/∑iCij. The circle markers in Figure 3C are the precision
and recall values for each miR class.

A more descriptive metric of the classification strength is the PR
curves for the 1:1:1 subset, as shown in Figure 3C. These curves are
generated by using the classifier’s probability prediction method, in
which the model outputs a probability vector Pi, corresponding to the
predicted probability that the sample belongs to class i. For each of the
three miR classes, we performed a binary classification for that miR class
by thresholding Pi. The threshold is varied between 0 and 1, and for
each threshold, we calculate the binary classification’s precision and
recall.

Calibration and Testing. For each data set, the classifier returns a
vector of length 4, which we denote by h, corresponding to the
predicted counts of occurrences in each class. The relation between h,
and the true counts of these classes, h′, is given by definition, by h = Ĉh′,
where Ĉ is the row-normalized confusion matrix Ĉij = Cij/∑kCkj.
Therefore, to obtain the best estimate of true counts, we multiply the
predicted class counts h by the inverse of Ĉ. This gives the final
estimation of the abundance of each class.

Doing this procedure for each of the unlabeled 1:1:1 and 2:5:3
mixture data sets, we obtain the estimation for the counts, h111′ and
h253′. The element-wise division h253′/h111′ gives our estimate for the
miR ratios in the 2:5:3 mixed data set. This division accounts for
experimental effects, as mentioned in the text, such as competitive
binding of different miR types and PSF variations. This estimate,
excluding its noise class, was normalized so its three remaining entries
sum to 1, as illustrated in Figure 3D.

■ UNCERTAINTY ESTIMATION
To estimate our prediction uncertainty, we repeated the above
procedure but with noise added to confusion matrix C and
counts vectors h111 and h253. Specifically, we replaced C with a
pair of matrices drawn from a multinomial distribution whose
mean value is C, and replaced the counts h111 and h253 with
counts drawn from Gaussian distributions with means equal to
h111 and h253 and standard deviations of 5% of the means. Each
matrix from the pair of randomized matrices was inverted to
“unconfuse” the randomized count vectors, and the resulting
h111′ and h253′ were divided and normalized to obtain a miR ratio
vector. We repeated this randomization procedure 10,000 times
to obtain an ensemble of ratio vectors (see Figure S12). We then
fit a 2D Gaussian to this ensemble to obtain the mean and the
covariance matrix. The ratios in Figure 3D correspond to the
mean vector projected onto the single-species vectors on the
simplex, and the errors correspond to a 95% confidence interval
(two standard deviations) for each miR type, calculated by
projecting the covariance matrix onto the single-species vectors.

■ PSF SIMULATIONS
All simulations were performed by a home-built Matlab code.
Here, we provide a short description of the pipeline:

1. Excitation and emission spectra of 16 commercial
fluorophores together with our four-notch filter were
downloaded from Semrock’s SearchLight spectra viewer
(names of fluorophores are provided in Table S2). Each of
the fluorophore’s spectrum was multiplied by the filter’s
spectrum to produce the actual spectrum visible on our
camera.

2. The wavelength to pixel displacement calibration curve of
our CoCoS setup (which was calculated previously35 was
adjusted according to the experimentally used relative
prism angle (RPA) by multiplying the entire curve by
sin((180-RPA)/2).

3. Chosen double−fluorophore combinations were then
simulated by converting each fluorophore’s spectrum into
a diffraction-limited dispersed image. This was performed
by assigning a Gaussian with unity amplitude and 1.15
pixel standard deviation to each wavelength in the
emission spectrum. Each Gaussian was displaced
according to the RPA-adjusted displacement curve and
summed together with other Gaussians. Finally, the total
summed intensity of all Gaussians was normalized to
unity and multiplied by an excitation efficiency factor
which was calculated by the excitation spectrum value
(fractions only) at the excitation laser wavelength.
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4. This process was repeated for the second fluorophore, and
both images were summed to provide the dual-
fluorophore spectral image.

5. When needed, a noise model was added to the simulated
dual-fluorophore spectral PSF image using the “imnoise”
function in Matlab. The noise model used in this work was
a sum of a Poisson distributed shot-noise and Gaussian
noise with a constant mean of 0.3 and a changing variance
(see Figure S8).
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