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Classically, the quantity of contact area AR between two bodies is considered a proxy for the
force of friction. However, bond density across the interface - quality of contact - is also relevant,
and contemporary debate often centers around the relative importance of these two factors. In this
work, we demonstrate that a third factor, often overlooked, plays a significant role in static frictional
strength: the distribution of contact. We perform static friction measurements, µ, on three pairs
of solid blocks while imaging the contact plane. By using linear regression on hundreds of image-µ
pairs, we are able to predict future friction measurements with 3 to 7 times better accuracy than
existing benchmarks, including total quantity of contact area. Our model has no access to quality
of contact, and we therefore conclude that a large portion of the interfacial state is encoded in the
spatial distribution of contact, rather than its quality or quantity.

Static friction, the force required to initiate sliding be-
tween two solid bodies, is an illusive quantity that is fa-
mously difficult to predict precisely. This reflects the fact
that this force is a single scalar which is the outcome of a
complex spatio-temporal process of slip nucleation across
a typically heterogeneous interface, and as a result de-
pends on a large variety of factors, both controlled [1–10]
and uncontrolled (such as wear) [9, 10]. Even in well-
designed, rigorous laboratory experiments static friction
can vary significantly and unpredictably between succes-
sive measurements using the same two bodies [9, 11].
This stochasticity largely stems from one inconvenient
truth about frictional interfaces: even using the same
bulk solids, a new system is formed after each slide. Each
such interfacial system contains the ensemble of contact
points between two rough bodies, which typically covers
a small fraction of the interface due to surface rough-
ness. The frictional strength is classically considered a
linear function of the total real contact area of an inter-
face AR, as the two quantities generally evolve in tandem
[1, 5, 12–16].

Several exceptions to the proportionality between AR

and µ, the static coefficient of friction, were demonstrated
recently in the context of frictional aging (strengthen-
ing over time) [2, 17]. Typically, these works conclude
that time-dependent quality of contact - the density of
chemical bonding across the interface - explains the dis-
crepancy [18, 19]; that is, frictional strength can still be
thought of as a function of integrated contact area, albeit
appropriately weighted by contact quality. This frame-
work is appealing, as it reduces the relevant state of the
entire contact ensemble to one number, consistent with
the state-of-the-art predictive model for friction, known
as Rate and State friction laws [20–22]. However, a grow-
ing body of evidence suggests that the relevant interfacial

state is in fact more complex than a single number can
describe [8–10, 23, 24]. Rate and State friction laws are
therefore a reasonable but crude approximation of static
frictional strength and its details remain the subject of
continual debate [25], while the degree of complexity re-
quired to model frictional strength is still an open ques-
tion.

Predicting a single number, such as µ, from a complex
data set is a canonical problem in data science. Notewor-
thy progress has recently been made in predicting labo-
ratory or real earthquakes by utilizing machine learning
methods like convolutional neural networks or boosted
decision trees, [26–29]. In closely related works, similar
methods were used to predict mechanical failure of rocks
[30] and amorphous solids [31]. Most work utilizes signals
that do not provide direct measurement of the internal in-
terfacial state, meaning that even successful predictions
are difficult to interrogate. Some prediction work has
been done using direct measurements from bi-material
model faults [29], but with equally complex algorithms,
and it is unclear if and how these results may apply to
single material, multi-contact interfaces. Together, these
exciting results indicate that friction is more predictable
than previously thought, suggesting the possibility of pre-
dictive models using direct measurements of the interface
in a straightforward and transparent manner.

Here we use linear regression to predict the static fric-
tion coefficient of a multi-contact interface undergoing
frictional aging using spatially resolved images of its real
area of contact and no other inputs. This method is 3
to 7 times more accurate than the benchmark methods
of prediction using using the total area of contact and
experimental parameters. Our results indicate that fric-
tional strength is encoded in the spatial distribution of
the real area of contact.
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FIG. 1. Experimental Setup and Benchmark Pa-
rameters a) Left: Schematic of the biaxial compres-
sion/translation stage. Right: Embedded optical setup to
image contact ensemble. b) Three typical images of interfa-
cial contact for after a few dozen, a few hundred, and nearly
one thousand experiments, respectively. All data in (b-e) is
for block pair 1. c) µ vs experiment number. Colors in (c-e)
indicate experimental parameter hold time TH . Final 18%
of data, to be used as the test set for predictions, is high-
lighted in purple on the right. d) µ for the highest (40N) and
lowest (0N) hold shears SH for block pair 1, separated and
color-coded by hold time. Circles are individual experiments,
squares are means and error bars are standard deviations for
unique (SH ,TH) pairs. e) µ as a function of real area of con-
tact AR (sum of image intensities). Dotted line is a linear fit
to all data.

The biaxial compression and translation stage used to
measure the friction coefficient is described in detail in a
previous work [10], and shown schematically in Fig 1(a).
Experiments are performed separately on three pairs of
laser-cut PMMA (poly methyl-methacrylate) blocks with
1 - 2.5 cm2 of nominal contact area. The bottom sam-
ples are original, extruded PMMA (11nm RMS), approx-
imately 60x100x4mm, which are directly contacted by
the horizontal force sensor. The top samples are lapped
with 1000 grit polishing paper (∼800nm RMS), and are
the main source of variance between interfacial systems.
While the samples are in contact, the interface is im-
aged using a total internal reflection (TIR) technique:
single-wavelength (473nm) light is injected into the bot-
tom sample where it remains trapped though TIR, ex-
cept at points of actual contact with the top sample. As
a result, when imaged from above, the brightness of the
interface corresponds to points of real contact, as shown
for three examples in Fig. 1(b). The camera position is
fixed in relation to the top (smaller, rougher) block, and
thus images in subsequent experiments contain common
features. Images have a resolution of approximately 1
pixel per 10 µm, the same order of magnitude as one
contact point.

Static friction measurements are taken via the stan-
dard Slide-Hold-Slide (SHS) protocol: Under constant
normal load, FN = 90N , samples are slid at 0.33 m/s
to create a new contact ensemble. The interface is then
held static for hold time TH sec under constant hold shear
SH . At the last moment the interface is held static, the
image of the contact plane is taken. Subsequently the
horizontal motor switches to position-control and loads
the interface at a rate of 0.33 mm/s (∼33 N/s) until the
initiation of slip, accompanied by a sharp drop in the
measured shear force. We define µ as the highest shear
force prior to slip, or the ‘static peak’, divided by the
normal load.

Over the course of hundreds of experiments, repeated
sliding slowly wears the surfaces of our samples. This
effect manifests in changing of the contact ensemble, and
generates a slow, and non-monotonic, drift of the friction
coefficient, as shown in Figs 1(b) and (c). This effect is
most rapid with a fresh sample, and thus the first several
dozen experiments are discarded from our data set (“run-
in”). Regardless, to avoid conflating the effect of wear
with the effects of changing hold time TH or hold shear
SH , the experiments are ordered such that every possible
combination of experimental variables is performed once
in a random order, then again in a different random order
and so on. At least five unique values of SH and of TH
are used for each block, see [32] for details.

Static frictional strength µ has a systematic but noisy
dependence on several factors in our data. For exam-
ple, it is well established that static friction ‘ages’, that
is, it is correlated with both the logarithm of the hold
time log(t) [1, 20, 22], and this logarithmic rate is de-
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FIG. 2. Image Processing and Weights a) Example raw
image from block pair 1, and 1mm2 section (blue outline)
after 2x2 max pooling. b) Visualization of the resulting wij

with a zoom in on 1mm2 section from (a). Red is positive,
white is zero, and blue is negative.

pendent on hold shear SH [23, 33]. Our data shows this
expected dependence, as demonstrated in Fig 1(c) and
(d), and also displays a weak dependence on real area of
contact AR, as shown in Fig 1(e). Note that the clas-
sical relationships are present in aggregate; AR, log(t),
and µ are all positively correlated. However, these cor-
relations are swamped by noise, and do relatively little
to predict frictional strength for an individual experi-
ment. In previous works with this experimental setup
[10, 23], wear was treated as a confounding variable, and
its resulting slow non-monotonic trend was subtracted
from µ to highlight the effect of experimental parameters.
This technique is discussed later in this report as another
benchmark bested by our method, however a true predic-
tion of µ should not involve any such modification of the
data. With or without such de-trending, there is a large
variance in µ that is not accounted for by experimental
parameters and AR, but, as we show, is in large part
predictable from the contact distribution.

We now turn to the distribution of the contact ensem-
ble to explain this variance. Like most physical (non-
digital) systems, our data collection is limited by real-
world constraints [34]. Block pairs can be used for only
a few hundred to one thousand experiments before they
are worn beyond use. Since each image contains mil-
lions of pixels (“features”), but each block can only pro-
vide ∼ 1, 000 examples, the problem is massively under-
constrained, and we reduce the complexity of our model
slightly by square-kernel max pooling by a factor of 4.
This reduction speeds computation, and smooths out
small-scale details, as shown in Fig 2(a).

Friction predictions µ̂ are constructed using linear re-
gression of gray-scale pixel intensities pij of these reduced

images. Explicitly

µ̂(pij) = C +
∑
ij

pijwij (1)

where C and wij are fitting parameters (weights) that are
constant for each block pair. These are found by standard
Ridge regression [35], i.e. a regularized minimization of
the prediction error,

argmin
wij ,C

∑
n

(
µ(n) − µ̂

(
p
(n)
ij

))2
+ α

∑
ij

w2
ij

 , (2)

where µn and p
(n)
ij are the static friction coefficient and

the interfacial image of the n-th experiment. α is a hyper-
parameter that discourages over-fitting. For each block,
the first 82% of experiments are used for training and
cross-validation (that is, finding the optimal α through
leave-one-out cross validation [35]). All metrics reported
below are evaluated on the last 18% of the data, which
were not used during training. Our model produces wij

that have the size, shape, and granularity of the reduced
images, as shown for typical values in Fig. 2(b) for block
pair 1. These values are therefore not transferable from
pair to pair, as they relate to specific asperities of a single
pair. As our interfaces experience irreversible evolution
through wear, predicting future values of µ is both more
challenging and practical than using an interspersed test
set; a temporal division of the test set requires wij to be
robust to substantial changes in overall contact distribu-
tion, which will inevitably occur in the final 18% of a data
set. In contrast, an interspersed train-test split reduces
the error of our model, but some of this improvement
may be attributed to learning the wear trend, not a true
predictive connection between contact distribution and µ.
Thus we do not report results obtained in this manner.

Prediction using contact distribution performs strik-
ingly well, as shown in Fig 3. The most obvious bench-
mark for comparison is prediction using a linear fit to the
total contact area AR,

µ̂A(AR) = a+ bAR AR =
∑
ij

pij , (3)

where a, b are fitting parameters. This gives an error 3 to
7 times higher than our distribution-based predictor. It
is worth emphasizing that our regression model is quite
distinct from the classical method of aggregating contact
area; for our system, with only a single normal load, we
find variations in total AR to only weakly predict varia-
tions in µ.

Another natural benchmark is the optimal predictor
that has access to all experimentally-controlled parame-
ters. That is, a predictor that predicts the mean friction
coefficient conditioned on the protocol,

µ̂exp(s, t) = mean
{s,t}

{
µ(n)

}
(4)
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FIG. 3. Contact Distribution Encodes Frictional
Strength Test-set mean squared prediction error for three
distinct block pairs. Our linear regression method using the
distribution of contact (D) is shown in red and is compared
with four methods using global variables. The errors of op-
timal experimental predictors (Eq. (4)) using hold time TH ,
hold shear SH , and both parameters (P ) are shown in gray.
Prediction error for a linear fit to the total area of contact
(AR) is shown in white. Error from predicting the mean value
(0) is shown in dark gray. Thin black bars indicate error when
using these benchmark methods on µ with the slow trend from
wear removed as described in text. 10x10 max-pooled exam-
ple images from each block pair are shown below prediction
errors, to scale with one another. Scale bars are 5mm.

where the mean is taken only over experiments with the
specified SH and TH . As seen in Fig. 3, µ̂exp is only
modestly better than predicting the unconditioned mean
value, generating at least 4 times higher error than our
methods. As previously mentioned, these parameters,
along with AR, do correlate with µ, however the signal
is drowned in noise for individual experiments, and the
relationship between these data and µ may evolve as the
interface wears.

It is interesting to ask what the model is and is not
learning through regression. Unfortunately, we cannot
directly interpret wij to ‘understand’ the learned interfa-
cial state: the problem is largely over-parameterized and
therefore there are many different wij that give similar
prediction metrics. For example, using different weight
regularization methods, such as LASSO or similar tech-
niques, provides vastly different weights, with compara-
ble predictive power. This makes the weights themselves
problematic to interpret directly. Nonetheless, the re-
gression is learning aspects of this interfacial system that
apply beyond its training set, as seen by the low error on
the test set.

Since the weights are not directly interpretable, we
must consider the possibility that the model is not learn-
ing anything but the connection between mu and the
three variables that account for much of its variance: SH ,
TH and interfacial wear, all of which are encoded in the

8 16 64 256 1028

Hold time TH (sec)

8

16

64

256

1028

P
re

d
ic

te
d

va
lu

e

84%

47%

13%

15%

47%

30%

1%

5%

45%

25%

8%

54%

15%

2%

17%

84%

Actual value
-30 -15 0 15 30

Hold Shear SH (N)

-30

-15

0

15

30

P
re

d
ic

te
d

va
lu

e

91%

5%

8%

89% 5%

100%

100%

5% 94%

Actual value

FIG. 4. Experimentally controlled parameters can be
extracted from the contact distribution. The percent-
age of actual and predicted SH and TH for block #2. Other
blocks show qualitatively similar results.

contact distribution. If this is so, predictions using these
three factors should perform at least as well as our model.
To give our benchmarks access to the evolution due to
wear, we de-trend the friction coefficient by defining

µ̃(n) = µ(n) − f(n) , (5)

where f is a low-order polynomial fit to the training data
(different for each block, shown for block pair 1 in Fig 1(c)
as a purple line). This is similar to methods employed
in previous works to increase the signal-to-noise ratio of
the evolution of µ as a function of hold time [10, 23].

When trained to predict µ̃ the benchmarks µ̂exp and
µ̂A perform far better than when they are trained to pre-
dict µ, as shown by the thin black bars in Fig 3. However,
they are still typically worse than our distribution-based
predictor while trained using the raw µ. This suggests
the connection between the contact distribution and µ
found by our model is not solely mediated by SH , TH ,
and wear. As further evidence, our model is only pass-
able at predicting these experimental parameters. When
trained using the same training/test split, but to predict
the values of SH or log( instead of µ, our model predicts
SH correctly ±5N in 99%, 74%, and 95% of cases , and
TH within a factor of 2 in 62%, 73%, and 100% of cases
for block pairs 1, 2, and 3 respectively. The confusion
matrix of block #2 is shown in Fig. 4 as a representative
example.

If asked to predict µ, a skilled experimentalist with ac-
cess to all confounding variables might optimally choose
µ̂exp trained on the detrended friction coefficient. Two
experiments that are performed with the same protocol
with relatively close n are “experimentally identical” and
all further variation beyond that connected to SH and
TH is signal which is unaccounted for. Our model out-
performs this predictor. Interestingly, unlike the accu-
racy of the benchmarks, the accuracy of our model does
not improve by de-trending the data, and in some cases
fairs slightly worse, depending on the de-trending pro-
tocol. This behavior is consistent with the idea that the
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contact distribution encodes the raw strength, and there-
fore predicting the actual µ values is actually easier than
learning the de-trended µ̃. To predict a de-trended value
of the friction coefficient, a model must simultaneously
learn a connection to µ and the subtracted trend, which
is not trivial to project forward in time.

We have shown that the distribution of interfacial con-
tact encodes information about frictional strength. Us-
ing a simple linear model and direct measurements of the
real area of contact, we are able to predict future mea-
surements of static friction in an experimental system.
These predictions outperform more standard (averaging)
predictions using AR and experimental parameters, and
even typically outperform these benchmarks when the
overall trend of wear is subtracted from the data.

It is possible that regions given high weight are regions
that contain weak contact or high residual stress likely
to nucleate slip, or regions that contain ‘barriers,’ strong
contact regions that stop fledgling slips from propagating
to the entire system [36]. We tried several ways to tease
out these details. We could not obtain discernible im-
provements over the linear model by using neural nets,
neither terms of error nor explainability (as expected).
We also trained predictors using only subsections of the
interface, widely varying the size and location of these re-
gions. However, since these problems are so overwhelm-
ingly over-parametrized we could not draw any consistent
conclusions from the results.

Of course, our linear regression model contains neither
the as-yet unsolved mechanics of slip nucleation nor the
dynamics of frictional aging, and our solutions wij are
not transferable or general, as they are based on the spe-
cific details of a data set from a single pair of blocks.
However, our model has shown that correlating features
of a map of contact points to frictional strength is fea-
sible and out-performs traditional predictions including
total quantity of contact. As we cannot measure con-
tact quality, a direct comparison is impossible, however
it is worth emphasizing that our model has no access to
contact quality; pixels in our images even prior to max-
pooling are on the scale of single contacts, and our model
is unable to reliably predict hold time, a factor known to
correlate with contact quality. Thus, when our model
uses the distribution of contact to eliminate the majority
of error produced when using total quantity of contact
as a predictor, it implies a strong connection between
contact distribution and frictional strength, as a possible
alternative to the often un-measurable contact quality.
Generalizing our approach to encode physical knowledge,
both in the model and the regularization, is a promising
avenue for future work.
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