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A neural encoder for earthquake 
rate forecasting
Oleg Zlydenko 1, Gal Elidan 1, Avinatan Hassidim 1, Doron Kukliansky 1, Yossi Matias 1, 
Brendan Meade 2,3, Alexandra Molchanov 1, Sella Nevo 1 & Yohai Bar‑Sinai 1,4*

Forecasting the timing of earthquakes is a long-standing challenge. Moreover, it is still debated how 
to formulate this problem in a useful manner, or to compare the predictive power of different models. 
Here, we develop a versatile neural encoder of earthquake catalogs, and apply it to the fundamental 
problem of earthquake rate prediction, in the spatio-temporal point process framework. The 
epidemic type aftershock sequence model (ETAS) effectively learns a small number of parameters to 
constrain the assumed functional forms for the space and time correlations of earthquake sequences 
(e.g., Omori-Utsu law). Here we introduce learned spatial and temporal embeddings for point process 
earthquake forecasting models that capture complex correlation structures. We demonstrate the 
generality of this neural representation as compared with ETAS model using train-test data splits 
and how it enables the incorporation additional geophysical information. In rate prediction tasks, 
the generalized model shows > 4% improvement in information gain per earthquake and the 
simultaneous learning of anisotropic spatial structures analogous to fault traces. The trained network 
can be also used to perform short-term prediction tasks, showing similar improvement while providing 
a 1000-fold reduction in run-time.

The application of machine-learning (ML) for the analysis of seismological data has seen substantial recent 
progress highlighted by new approaches for the classification and characterization of seismic waveforms1,2, 
automatic phase picking3, identification of low-magnitude earthquakes4, and catalog declustering5,6. In the 
development of earthquake catalogs ML approaches have increased the number of detected events by ten folds4 
and will possibly reduce travel time dependence for earthquake early warning from the speed of seismic waves 
to the speed of light7.

However, in earthquake sequence modeling machine learning techniques have yielded limited progress in 
terms of enabling improved characterizations seismicity patterns8,9. The specific task of forecasting the timing 
of future seismic events is a longstanding and fundamental challenge both as a basic scientific question and for 
applied hazard analysis. While in some cases seismic activity features relatively consistent temporal10 or spatial 
patterns11, the time, location and magnitude of seismicity has remained difficult to predict quantitatively12.

The state-of-the-art approach to this problem in statistical seismology is to represent earthquake sequences 
as a spatio-temporal point process13–15. In this approach, the model is tasked with predicting the instantaneous 
rate of earthquake occurrence above a certain magnitude, �(x, y, t | Ht−) , where x, y are spatial coordinates 
(longitude and latitude or map projected coordinates) and t is time. Ht− represents all the information available 
to the model prior to time t. The time-dependent function � is the quantitative representation of the intensity of 
seismic activity, characterizing both the foreshock16,17 and aftershock18 epochs as well as serving as the foundation 
for seismic hazard assessment19.

The epidemic-type aftershock sequence (ETAS) model13,20 is the most commonly used such model, 
representing � as a self-exciting branching process, which assumes a “background rate” of seismicity and a 
response function, f, whose specific form is chosen such that the long-term statistics of synthetic earthquake 
catalogs generated from the model reproduce the two widely observed phenomenological distributions 
of seismicity: (1) the Omori-Utsu law of aftershock rate decay and (2) the Gutenberg-Richter distribution 
of event magnitudes. There are a few popular choices for the response function21–24, that share the form of, 
f = µ(x, y)+ T(t − ti)S(x − xi , y − yi;Mi) . Here µ is called the time-independent “background rate”, T is a 
temporal kernel featuring a power-law decay consistent with Omori’s law, and S is a spatially decaying kernel22,25. 
xi , yi , and ti are the earthquake’s hypocentral location and occurrence time, respectively.

The ETAS model has been used as an effective representation of earthquake rate changes19,26–28. However, 
its applicability has been limited by several factors. First, finding optimal ETAS parameters is a challenging 
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optimization task, because of a broad minima associated with the the space-dependent background seismicity 
rate and a range of different parameters for the response function can produce similar log-likelihood scores29–33. 
Second, the classical predetermined forms of f have a limited expressive power and limit the ETAS approach to 
the consideration of the hypocenters, times, and magnitudes of past moderate-large magnitude earthquakes. 
Additional relevant data including small magnitude seismicity, tectonic structure, fault locations and earthquake 
focal mechanisms are typically not modeled, though some attempts have been made to incorporate them19,21,34,35.

Here we propose the FERN (Forecasting Earthquake Rates with Neural networks) encoder-decoder neural 
based model to generalize beyond the ETAS constraints. Conceptually, the input is encoded by a neural network 
to generate a latent representation of the tectonic state, which is then passed to a decoder network (Fig. 1). This 
design has two specific advantages: first, it naturally allows to incorporate different data sources and modalities, 
which can be added to the model with source-specific encoders. Second, the same encoded state can be used as 
input to several prediction heads (“decoders”), which can be used to for different prediction tasks.

This approach matches the performance of the state-of-the-art ETAS model in rate prediction when trained 
on identical data sets and that the FERN model exhibits increased accuracy when supplied with earthquakes of 
magnitude smaller than the completeness magnitude threshold of the catalog. We also show how the trained 
encoders can be used to solve a different prediction problem, a short-term forecast of the number of events in a 
24-h period. In this task, the FERN model outperform the ETAS model while requiring 4-5 orders of magnitude 
less compute time. We do not provide any uncertainty estimates based either on either data error propagation 
or varying model architecture.

We use three encoders (Fig. 1) to capture different aspects of the seismicity patterns. The recent earthquakes 
encoder is a direct generalization of the ETAS response function f, replacing the human-engineered functional 
form of f by a more general neural network. It is intended to capture short-term seismic activity. The long term 
seismicity encoder learns long-term spatio-temporal seismic patterns by counting earthquake events in varying 
temporal spans, ranging from minutes to years. Lastly, the location encoder, analogous to the background rate 
of seismicity in the ETAS model, learns location-specific information. Details of the encoder architectures are 
given in the methods section below, and the source code is available at36.

Results
Here we apply the FERN model to the observed seismicity of the greater Japanese Islands region recorded over 
the last 30 years. The study region is discretized into a grid of square cells of dimension 0.25◦ × 0.25◦ . The input 
to the model is a catalog of earthquakes, including the hypocenter, magnitude, and time of each event, as well as 
the geographic location of the gridded cell centers. This information is passed through three neural encoders to 
generate a latent representation of seismic history. The encoded history is then passed through a neural decoder 
to perform the prediction task.

We apply the FERN model to study the seismic activity in three sub-regions near the Japan subduction zone 
(Fig. 2). Using hypocenter data from the JMA earthquake catalog39 the network is trained separately in each 
region using strict train-validation-test temporal splits of the data with a training period spanning the years 1979-
1995 and a validation period of 1996–2003. A hyper-parameter search is performed to determine the optimal 
network parameters. Finally, the best performing model is trained over both the training and validation period, 
and is evaluated over the catalog of the years 2004–2011 (test period). The evaluation is performed over a finer 
grid, 0.05◦ × 0.05◦ , to obtain a better estimation of model performance. Numerical tests have demonstrated 
that further resolution refinement does not improve our estimation of the log-likelihood. All metrics reported 
below pertain to the performance of the FERN model during a test period that ends prior to the great Tohoku-
oki earthquake of March 2011. Simultaneously, we also train an ETAS model26,40–42 over the same temporal 

Figure 1.   A sketch of the model architecture incorporating information up to time t.
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and spatial windows. Average seismicity rates in the three period are given for each region in Table I of the 
supplementary material.

Earthquake rate prediction.  As a first step, we train the FERN model to predict the instantaneous rate of 
seismicity, �(x, y, t | Ht−) which is also the output of the ETAS model. The network is trained to optimize the log-
likelihood of the observed catalog, L =

∑

i log �i −
∫∫∫

�(x, y, t)dx dy dt13,15 where �i = �(xi , yi , ti | Hti−) is 
the predicted rate at the spatiotemporal location of the i-th earthquake and the sum is taken over all earthquakes 
in the study region above a certain magnitude cutoff Mc which we assume to be the estimated completeness 
magnitude of the catalog.

We find that in all three study regions FERN exhibits a comparable log-likelihood score to that of ETAS 
(Table 1). Because FERN enables the incorporation of additional information without modification of the model 
architecture, we can directly include potentially precursory seismic activity from earthquakes of magnitude lower 
than Mc using these smaller events only as features, but not as labels. That is, the low-magnitude earthquakes are 
included as input to the model, but do not change the calculation of L . This allows a proper statistical comparison 
of the model including smaller events (FERN+) with ETAS and with FERN, as all these models describe the 
same statistical space, namely seismicity above Mc . The additions of smaller magnitude seismicity improves the 
information gain per earthquake by 4-12% in all tested regions as compared to both ETAS and FERN with large 
earthquakes only (Table 1). This amounts to ∼ 0.1 information bits per earthquake on average.

Short‑term forecasts.  As a second test, we train the FERN model to perform a short-term seismic 
forecast. Using the same encoders that were trained to perform rate prediction, and without updating their 
weights, we now train a different decoder that performs a short term forecast for the number of earthquakes of 
magnitude > Mc that occur in each spatial 0.5◦ × 0.5◦ cell. Specifically, the features in each training example are 
the earthquakes that occurred up to time t and the label for each cell is the number of earthquakes that occurred 
in it in the 24 h after time t. Unlike rate prediction, this is a standard (supervised) regression problem whose 
metrics are readily interpretable. We follow the same strict train-validation-test split as above for training the 
decoders (the encoders are not retrained), and benchmark model results against catalogs generated from the 
trained ETAS model. We follow the standard protocol26 of generating 100,000 catalogs from ETAS for each day, 
and calculating the average number of earthquakes in each cell. The results are presented in Table 2.

We compare model performance using Receiver Operating Characteristic analysis (ROC) obtained by 
thresholding the model output and counting the rate of true positive (TPR) rate and false positive rate (FPR) 
predictions (TPR here means that at least one earthquake occurred within a grid cell during a target time 
interval). For example, in region C at a FPR of 20% ETAS provides a TPR of 80% while FERN+ shows a TPR of 
90%. Similar results are obtained for region B, while in region A all models show similar performance.

35°N
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M>8

155°E150°E145°E140°E135°E

Figure 2.   The three study regions in northern Japan. Earthquakes larger than Mw = 5 that occurred during the 
study period are plotted. Maps, here and in Fig. 4, were generated using the pygmt37 and matplotlib38 python 
packages.
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This is also true in other statistical tests, as shown in panel (b) of Fig. 3. In it we compare the likelihood score 
of the observed seismicity in the test period (“L-test”) assuming the number of earthquakes in each cell follows 
a Poisson distribution, and the likelihood score when comparing only the spatial distribution of earthquakes 
over the test period (“S-test”), see supplementary material for more information. We note that performing short 
term prediction with FERN (or FERN+) requires only a single forward pass of the trained network, while an 
ETAS prediction requires running a large number of simulations to collect catalog statistics26. This means that 
FERN+ provides more than a 1000-fold improvement in runtime.

It should be noted that the performance of all models, both machine-learned and ETAS, varies across different 
geographical regions and time windows43, as we see here as well. For example, it is seen that the information gain 
of FERN+ over ETAS in Region A is relatively small. It is difficult, in general, to interpret why the neural model 
performs well in one region and less so in others, though we believe that in this case the cause is the change in 
seismicity statistics between the train+validation periods, on which the models were trained and calibrated, and 
the test period, for which the metrics are reported. Table I of the supplementary material details these statistics. 
It shows that region A shows much more Mw ≥ 7 earthquakes in the test period (0.88 events/year) than in the 
train+validation period (0.2/year). Such a dramatic change does not occur in region B or C. Such effects might be 
mitigated by continuous training of the model (“pseudo-prospective testing”) or by training a model on several 
regions in parallel. However, it is worth noting that even in region A the neural model achieves comparable 
metrics to that of ETAS.

Inspecting the trained model.  Unlike ETAS, the parameters of the neural model cannot be trivially 
interpreted, which is common for neural models44. However we can experiment with FERN model to answer 
the question: How does the predicted seismicity rate �(x, y, t) change in response to a single earthquake? The 
answer that the ETAS model gives to this basic question is, by definition, f. To answer this question with the 
FERN model, we added an synthetic earthquake to the event catalog, at an arbitrary time and location in Region 
A (cf. Fig. 2). In Fig. 4 we present the difference between model prediction for �(x, y, t) 1 h after this synthetic 
earthquake and its prediction when this earthquake is not present, for both ETAS and FERN.

We find that the response of FERN shows a complex and anisotropic spatial structure, with increased response 
along the fault trace. We note that the location of the fault line was not included as a feature to the model and 
that the FERN model learns that the increased seismic activity is neither isotropic nor spatially homogeneous 
which is, of course, a well known characteristic of seismicity45–49. It is also seen that the output of the location 
encoder shows similar spatial patterns to the patterns of seismic activity, as was recently shown50. Similarly we 

Table 1.   Average Information Gain Per Earthquake (IGPE) for all models in the rate-prediction task.

Train Test

Region A

ETAS 3.280 2.278

FERN 3.354 2.308

FERN+ 3.529 2.395

Region B

ETAS 2.892 2.616

FERN 2.981 2.573

FERN+ 3.140 2.749

Region C

ETAS 1.877 1.395

FERN 1.807 1.717

FERN+ 2.035 1.803

Figure 3.   ROC curves for different models in region C. Regions A,B show qualitatively similar results.
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find that the temporal dependence of the the rate increase learned by FERN is a power-law, but one that decays 
slower than the ETAS prediction, depends less strongly on the magnitude, and the magnitude dependence is not 
homogeneous but rather spatially dependent (Supplementary material).

Conclusions
We present a neural architecture for earthquake rate forecasting, adopting the point-process approach but 
replacing the assumed functional forms of the ETAS model with learned embeddings. Our method shows 
comparable or superior test metrics (without uncertainty analysis), and the latent representation of seismic 
history generated by the neural encoders, which were trained to perform rate prediction, can readily be used also 
for related tasks with small additional effort. This raises hope that such models could be useful in other tasks, 
such as magnitude prediction or hazard assessment.

Methods
Neural architecture.  Here we describe the main design choices of the FERN model. Full details can be 
found in the supplementary material.

Encoders. 

1.	 Recent earthquakes (ETAS-like): This encoder model is a direct generalization the sum term in the definition 
of ETAS. That is, its output is a sum of a function applied to cataloged data of every earthquake in the (recent) 
past. The function is constructed in the following way: The catalog provides 5 numbers that describe each 
earthquake, indexed by i: the time of the event ti , its epicentral location xi , yi , depth di and moment magnitude 
Mi . We use UTM coordinates for x, y. In addition, the model has access to the spatiotemporal parameters of 
the cel l  x ,   y ,   t .  For each earthquake and cel l  we calculate a l ist  of  k  features 
F1(t, x, y, ti , xi , yi , di ,Mi) . . . F

k(t, x, y, ti , xi , yi , di ,Mi) . These feature functions are inspired by ETAS and 

Figure 4.   Looking inside the model. (a,b) The rate difference, as predicted by ETAS and FERN to a single 
earthquake. We added a synthetic earthquake to the catalog at 144◦, 40◦ (marked with a yellow star) at time 
t = 10.10.2010 at midnight, and calculated the difference between the rate predicted by the models with and 
without the synthetic earthquake, 1 h after the event. The plotted region is Region A, and the fault line is shown 
in red. (c) The activation of one of the latent neurons in the output of the location encoder, for each spatial 
cell (other neurons show qualitatively similar patterns). It is seen that this patterns correlates well with total 
number of earthquakes in the cell, shown in (d). We can think about the output of the location encoder as a 
generalization of the background rate µ of the ETAS model, which is shown in (e).

Table 2.   Classification metrics for all models across all region in the short-term prediction task, evaluated on 
the test set. Best metric for each experiment is typed in boldface. The log-likelihood score and AUC ROC (area 
under the ROC of Fig. 3) are standard classification metrics44. The S-test is a log-likelihood score disregarding 
the temporal distribution of earthquake times, commonly used in earthquake forecast evaluation51,52.

Region

Log-likelihood score S-test AUC ROC

RuntimeA B C A B C A B C

Poisson 3553 6383 4847 513 1539 1243 0.69 0.79 0.85 ∼ 1µ  s

ETAS 2927 4993 3849 160 364 290 0.80 0.90 0.91 ∼ 10 h

FERN 2967 4770 3701 166 194 235 0.78 0.92 0.91 ∼ 1 s

FERN+ 2926 4747 3515 144 209 157 0.79 0.92 0.94 ∼ 1 s



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:12350  | https://doi.org/10.1038/s41598-023-38033-9

www.nature.com/scientificreports/

constrained by physical considerations. A few examples of feature functions are the magnitude of the 
earthquake, F1 = eMi ; the reciprocal of the elapsed time since the earthquake, F2 = 1/(t − tj) ; the reciprocal 
of the distance earthquake’s epicenter, F3 = 1/

√

(x − xj)2 + (y − yj)2 , etc. The full list of feature functions 
is given in table III of the supplementary material. The feature vector 

(

F1i , . . . , F
k
i

)

 is then passed through a 
multi-layer perceptron44 whose output is a latent representation of the earthquake features. This 
representation is then summed over the past N earthquakes, like the sum that defines � in the ETAS model. 
The encoder is clearly invariant to permutations of catalog rows. Simply put, this encoder essentially mimics 
the structure of them time-dependent part of an ETAS model, only replacing the function f with a neural 
network, allowing to parameterize a much larger family of functions.

2.	 Long range seismicity: The goal of this encoder is to capture long- and short-term seismicity at the point 
(x, y) at time t. The features for this model are built as follows. For each such point we calculate n(T, d, M), 
which is the number of earthquakes with magnitude larger than M, that occurred at most T seconds prior 
to t, at epicentral distance smaller than d from (x, y). For implementation simplicity we use L1 distance, but 
this choice has negligible effects on the results. The parameters T, d, M are taken from a predefined list. The 
values of T and d are logarithmically spaced, allowing to capture very long histories as well as recent activity. 
This produces a feature vector (n1, . . . , nk) per spatial location. Following a weight-sharing strategy similar 
to that of the recent earthquake encoder, we then use a multi-layer perceptron to parameterize a function 
g(n, T, d, M) which is applied to all spatial locations. Implementation details are given in the supplementary 
material. Our experiments showed that using such weight sharing, i.e. learning a single function g, gives 
significantly better results then learning a more general model that takes the individual ni as input.

3.	 Location: This encoder is intended to capture local properties for each spatial cell. The model output is a 
16-dimensional vector representing the cell’s identity. In Fig. 4 it is seen that the encoding is well correlated 
with seismicity. The encoder is implemented as a one-hot encoder44 (treating every cell as a different class), 
followed by a single fully connected layer.

Loss metric.  To calculate the loss,

we use the method suggested by Omi. et. al53. The total train period is divided into intervals that begin an end 
at the times {ti} where earthquakes occurred. Each training example corresponds to one such interval [ti , ti+1] . 
For each interval, the catalog of all earthquakes that occurred prior to ti is passed to the different encoders. The 
output of the encoders, the latent representation of Ht− , is then passed to a decoder that outputs 

∫ ti+1

ti
�dt for each 

cell. For this calculation, �ti = ti+1 − ti is supplied as in input to the decoder (see Fig. 1). The second term in 
Eq. (1) is then evaluated by summing the model output over all examples, and the first term is obtained through 
automatic differentiation, which is computationally cheap in neural networks.

Data avilability
The datasets generated and/or analysed during the current study are available in the Japan Meterological Agency 
(JMA) earthquake catalog, https://​www.​data.​jma.​go.​jp/​svd/​eqev/​data/​bulle​tin/​index_e.​html.
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