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Gaussian fluctuations of spatially inhomogeneous
polymers†

Yohai Bar-Sinai*‡ and Eran Bouchbinder

Inhomogeneous polymers, such as partially cofilin-bound actin filaments, play an important role in

various natural and biotechnological systems. At finite temperatures, inhomogeneous polymers exhibit

non-trivial thermal fluctuations. More broadly, these are relatively simple examples of fluctuations in

spatially inhomogeneous systems, which are less understood compared to their homogeneous counterparts.

Here we develop a statistical theory of torsional, extensional and bending Gaussian fluctuations of

inhomogeneous polymers (chains), where the inhomogeneity is an inclusion of variable size and

stiffness, using both continuum and discrete approaches. First, we analytically calculate the complete

eigenvalue and eigenmode spectra within a continuum field theory. In particular, we show that the

wavenumber inside and outside of the inclusion is nearly linear in the eigenvalue index, with a nontrivial

coefficient. Second, we solve the corresponding discrete problem and highlight fundamental differences

between the continuum and discrete spectra. In particular, we demonstrate that above a certain

wavenumber the discrete spectrum changes qualitatively and discrete evanescent eigenmodes, which

do not have continuum counterparts, emerge. The implications of these differences are explored by

calculating fluctuation-induced forces associated with free-energy variations with either the inclusion

properties (e.g. inhomogeneity formed by adsorbing molecules) or with an external geometric constraint.

The former, which is the fluctuation-induced contribution to the adsorbing molecule binding force, is

shown to be affected by short wavelengths and thus cannot be calculated using the continuum approach.

The latter, on the other hand, is shown to be dominated by long wavelength shape fluctuations and hence

is properly described by the continuum theory.

1 Introduction

Spatially inhomogeneous systems are ubiquitous in the natural
and manmade world around us, giving rise to intriguing physical
behaviors as compared to their homogeneous counterparts. For
example, glassy systems – which feature inhomogeneity/disorder
on small lengthscales – still pose great challenges in condensed-
matter and statistical physics.1–3 Low-dimensional systems, such
as rods, beams and polymers, also feature interesting behaviors
in the presence of spatial inhomogeneities in their properties.
When these systems are excited externally, either by mechanical
perturbations or by coupling to a heat bath, they exhibit non-
trivial responses and fluctuations associated with the spatial
inhomogeneity. Thermal and entropic effects are known to play
a major role in a broad range of soft matter and biophysics
problems where polymers and biopolymers are considered.4,5

Therefore, it is important to understand the effect of spatial
inhomogeneity on the fluctuations of polymers.6–8

To address this problem we study in this paper the mecha-
nics and statistical thermodynamics of spatially inhomogeneous
one-dimensional polymers where the inhomogeneity takes the
form of an inclusion of finite length which is mechanically
softer than the rest of the polymer. The polymer is assumed to
be submerged in a solvent of a fixed temperature such that
it undergoes overdamped equilibrium thermal fluctuations
under certain constraints. There are many physical systems
that might give rise to such a situation. For example, actin
filaments in cells are known to significantly soften in regions
where cofilin molecules bind to them,9–12 so partially cofilin-
decorated actin filaments are spatially inhomogeneous. Other
natural and man-made systems can exhibit similar spatial
inhomogeneity.6,13–16

Our discussion, while being motivated by these realistic and
important examples, remains rather general and independent
of the particular details of the underlying physical system. This
is achieved by considering general Hamiltonians in the small
gradient approximation, i.e. generic quadratic Hamiltonians
(energy functionals).
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The geometry of the fluctuating polymer is sketched in Fig. 1.
The polymer’s length is assumed to be comparable to the bending
persistence length such that dynamics can be approximately
described in terms of Cartesian coordinates and do not necessitate
arc-length parametrization. In the context of torsional fluctuations
of the polymer, the energy functional is quadratic in the gradient
of the twist angle, while in the context of extensional fluctua-
tions of the polymer the energy functional is quadratic in the
gradient of the longitudinal displacement along the polymer.
These fluctuations are represented by the thin curved longi-
tudinal lines in Fig. 1 (torsion) and by the uneven spacing of
circumferential lines (extension). The resulting energy functional
is the same in these two cases.

In the context of bending fluctuations of the polymer, the
energy functional is quadratic in the local curvature, which in
itself is a second derivative of the out-of-plane deflection of the
polymer in the small gradient approximation, cf. Fig. 1. This is
nothing but the classical one-dimensional Helfrich Hamiltonian in
the absence of surface tension.5,17 As such, from a more theoretical
perspective, we consider the classical example of massless§
quadratic field theory in one spatial dimension with position-
dependent properties, applicable to a broad range of other physical
systems.18

Gaussian fluctuations of such one-dimensional fields, i.e.
when the quadratic approximation is adopted, are oftentimes
addressed in the framework of statistical field theory. In this
framework a continuum approach is invoked and macroscopic
variables of interest are assumed to vary slowly in space. One of
our goals here is to understand to what extent the problem can be
described by the continuum approach and when does it break
down. To that aim, we solve the problem using both a continuum
field theory and its discrete counterpart.

We highlight the fundamental differences between the conti-
nuum and discrete spectra of eigenvalues and eigenmodes, and
explore the implications of these differences in relation to two
physically realistic fluctuation-induced forces. The first one is a
fluctuation-induced force associated with free-energy variations

with respect to the properties of the inclusion (e.g. formed by
adsorbing molecules, in which case it is the fluctuation-induced
contribution to the binding force of the adsorbing molecules),
while the second is a fluctuation-induced force associated with
free-energy variations with respect to an external geometric
constraint (e.g. a confining wall). We show that while the
continuum theory is valid in the latter case, it breaks down in
the former.

2 Mathematical formulation

We consider a spatially inhomogeneous one-dimensional polymer
of length L, consisting of N monomeric units, submerged in a
solvent of temperature T. x A [0,L] is the coordinate along the
polymer. The inhomogeneous polymer is treated at the continuum
level as a one-dimensional beam/rod characterized by position-
dependent mechanical properties along its axis x. The polymer’s
length is assumed to be comparable to its persistence length
with respect to torsional, extensional and bending fluctuations,
which implies that the polymer is semi-flexible and hence is
fully characterized by its elastic energies.

For concreteness, we consider a polymer composed of 3 locally
homogeneous regions with sharp interfaces between them,
cf. Fig. 1. In other words, we consider an inclusion inside a polymer
such that the space-dependent elastic modulus reads

kðxÞ ¼
ks x1 oxo x2

kh xo x1 or x4x2

(
: (1)

where k equals ks inside the inclusion and kh otherwise.
The subscripts h and s denote ‘‘hard’’ and ‘‘soft’’, respectively,
so kh 4 ks. Here, k refers generically to either of the torsional,
extensional or bending moduli.

We consider the small gradient approximation in which
torsional, extensional and bending are described by quadratic
energy functionals. At the continuum level, this leads to Gaussian
fluctuations that are controlled by either of the two quadratic
energy functionals:

Uð1Þðx; tÞ ¼ 1

2

ðL
0

kðxÞ @wðx; tÞ
@x

� �2

dx;

Uð2Þðx; tÞ ¼ 1

2

ðL
0

kðxÞ @2wðx; tÞ
@x2

� �2

dx;

(2)

where w(x,t) is a fluctuating field and k(x) is its related
modulus. Torsional and extensional fluctuations are described
by the former, while bending fluctuations are described by the
latter. A sketch of the geometry is given in Fig. 1, which shows
all three types of motions. In torsional dynamics w(x) repre-
sents the twist angle, measured relative to an a priori given
equilibrium twist angle profile y0(x).19 In extensional dynamics,
w(x) measures the longitudinal displacement along the axis of
the polymer. In bending dynamics, w(x) measures the normal
deviation of the polymer from a straight line, i.e. the out-of-
plane deflection (we assume that the polymer does not feature
any intrinsic curvature). In the case of a homogeneous polymer,

Fig. 1 Schematic sketch of a fluctuating polymer, showing bending,
extensional and twisting motions. The polymer length L is assumed to be
of the order of the persistence length (for bending) such that the fluctuations
can be treated to linear order as deviations from a straight line. The purple
segment represents a region with a reduced elastic modulus. The gray
square at the origin represents pinning of the polymer at one end, the other
end being free.

§ In the jargon of statistical field theory, ‘‘massless’’ refers to the lack of a term
proportional to w2, which in our case would correspond to an external potential.
Here, we also work in the overdamped limit, which in this context might be termed
‘‘inertialess’’.
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i.e. constant k, U(2) reduces to the standard worm-like-chain
model (in the limit of short L).

The very same problem can be formulated at the discrete
level, making reference to monomeric degrees of freedom and
lengthscales. In particular, the discrete analogs of eqn (2) take
the form

Uð1Þ ¼ 1

2

X
i

ki
wi � wi�1

a

� �2
a;

Uð2Þ ¼ 1

2

X
i

ki
wiþ1 þ wi�1 � 2wi

a2

� �2

a;

(3)

where a � L/N is a monomeric lengthscale, ki and wi are
the discrete versions of k(x) and w(x), respectively, and i is the
monomer index.

Eqn (2) and (3) are representative of a wide class of physical
systems whose energy functionals, in the quadratic approxi-
mation, can be written as

U ¼ 1

2
wðxÞjLjwðxÞh i ¼ 1

2L

ðL
0

wðxÞLfwðxÞgdx;

U ¼ 1

2
wjH jwh i ¼ 1

2

X
i;j

wiHijwj ;

(4)

where H is a real symmetric positive definite matrix and L is
a self-adjoint real differential operator.20 Eqn (2) and (3) are
recovered from eqn (4) with the proper identification of the
dynamical operator. For the discrete theory, one clearly has
H = ==U. For the continuum theory, one finds that the dynamical
operators related to U(1) and U(2) are, respectively,

Lð1Þfwg ¼ � L
@

@x
kðxÞ@w

@x

� �
for Uð1Þ;

Lð2Þfwg ¼ � L
@2

@x2
kðxÞ@

2w

@x2

� �
for Uð2Þ:

(5)

We adopt here the convention that the eigenvalues of L or H are
of energy dimensions, and accordingly the variables wi and w(x)
are dimensionless. In addition, it would be useful to introduce
the dimensionless parameters f and D:

f � x2 � x1

L
; (6)

D � kh
ks

� �1=2

for Uð1Þ; D � kh
ks

� �1=4

for Uð2Þ;

which are measures of the inclusion size and contrast, respectively.
Note that 0 r f r 1 and D Z 1. Finally, in order to completely
define the problem one needs to specify also the external boundary
conditions at x = 0,L. Here we take the polymer to be fixed (pinned)
at x = 0 and free at x = L. Mathematically, this means

w(0) = w0(L) = 0 for U(1), (7)

w(0) = w0(0) = w00(L) = w0 0 0(L) = 0 for U(2),

where a prime denotes partial differentiation with respect to x.
For the discrete formulation, this amounts to setting wi = 0

for i o 1 and ki = 0 for i 4 N. Choosing different boundary
conditions does not qualitatively change the results pre-
sented below.

3 Eigenmode analysis: continuum
theory

Gaussian fluctuations are fully determined by the eigenvalues
of the relevant dynamical operator. Consequently, an essential
step in the statistical thermodynamic calculations to follow
is finding the eigenvalues and the corresponding eigenmodes
of L or H. This will be the subject of this section and the next
one. In this section we calculate the eigenmodes within the
continuum theory, and show that the wavenumbers have a
constant density. In Section 4 the corresponding discrete
problem is solved and the differences between the results are
discussed.

3.1 General form of the eigenmodes

The calculation of the eigenmodes is very much in the spirit of
standard wave theory analysis of reflection and refraction from
a sharp material boundary, or of the quantum mechanical
treatment of transmission over a potential barrier step. The
eigenmodes wq are functions that satisfy the continuum eigen-
value equation – the Sturm–Liouville problem:

LwqðxÞ ¼ lqwqðxÞ; (8)

where lq is the eigenvalue associated with wq. Solving eqn (8) is in
general a non-trivial task. However, since k(x) is locally constant
for x a x1,x2, treating the soft and hard polymeric segments
separately significantly simplifies the mathematical structure.
That is, in each segment k is space-independent, such that except
at the discontinuity points, eqn (8) reads

kðxÞwq
0 0 ðxÞ ¼ lqwqðxÞ; for Lð1Þ; (9)

kðxÞwq
0 0 0 0 ðxÞ ¼ lqwqðxÞ; for Lð2Þ: (10)

It is thus natural to write the solution separately for the different
segments. For each segment, we write wq(x) as a superposition of

the independent solutions of eqn (9) and (10). For Lð1Þ, the solution
of eqn (9) reads

wqðxÞ ¼

A1 cosðqxÞ þ A2 sinðqxÞ 0o xox1

A3 cosð~qxÞ þ A4 sinð~qxÞ x1 oxox2

A5 cosðqxÞ þ A6 sinðqxÞ x2 oxoL

8>>><
>>>:

; (11)

where Ai are yet undetermined real amplitudes. We also impose
the supplementary condition

q2kh = q̃2ks or equivalently q̃ = Dq, (12)

which ensures that eqn (9) is satisfied with the same eigenvalue
lq = Lkhq2 = Lksq̃2 at all points in space. A mode with negative
q can be obtained by rearranging the coefficients {Ai} in the
corresponding mode with a positive q, so we only consider
modes with q 4 0. Similarly, for Lð2Þ we write the solution wq(x)
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of eqn (10) as a combination of cos(qx), sin(qx), cosh(qx) and
sinh(qx), with the supplementary condition

q4kh = q̃4ks or equivalently q̃ = Dq. (13)

Note that D is defined differently for the two operators, cf. eqn (6).

3.2 Internal boundary conditions

A crucial step in calculating the structure of the eigenmodes is
specifying the internal boundary conditions (BC) at the dis-
continuity points x = x1, x2. These, together with the external
boundary conditions at x = 0 and x = L determine the ampli-
tudes {Ai}. It is important to stress that the external boundary
conditions completely and uniquely specify the Sturm–Liouville
problem. However, since we treat the problem separately for the
different segments, we also need to specify the internal BC at the
mechanical discontinuity points. That is, the internal BC are a
result of our choice to divide the problem into 3 distinct segments.
If k were to change over a finite length-scale, then this division
would not have been necessary (nor possible) and no internal BC
would have been needed. Such a calculation is carried out in the
ESI,† though in this case it cannot be carried out analytically.

The form of the internal BC can be obtained either by taking
the limit of an infinitely small variation length of k, or equivalently,
in the following manner. The spatiotemporal dynamics of the
system are governed by the equation

Tfwðx; tÞg ¼ Lfwðx; tÞg; (14)

where T is a differential operator acting on the time coordinate.
T{w(x,t)} is proportional to qttw(x,t) in inertial systems, to qtw(x,t)
in highly overdamped systems and might have a more complicated
structure in other cases. Since the particular form of T is irrelevant
to this discussion, we do not specify it here. We integrate eqn (14)
over a region of size d around a discontinuity point, say x1. That is,
we consider the region �do x� x1 o d and take the limit d- 0.
Using the fact that for x a x1 k is space-independent, the

integration can be done explicitly. For Lð1Þ the result is

lim
d!0

ðx1þd
x1�d

Tfwðx; tÞgdx ¼ �L lim
d!0

ksw0jx¼d�khw0jx¼�d
� �

:

Irrespective of the explicit form of T, we know that it does not
produce a singularity at x = x1 and thus the left-hand-side of the
above equation vanishes. We therefore conclude that the function
k(x)w0(x) is continuous across the interface. Repeating this proce-
dure again shows that w(x) is continuous across x = x1. As before,
one uses the fact that although k is discontinuous, it is not singular
and its integral over a vanishingly small region vanishes.

To summarize, the 4 internal boundary conditions for Lð1Þ are

w½ �½ �x1¼ w½ �½ �x2¼ kw0½ �½ �x1¼ kw0½ �½ �x2¼ 0; (15)

where �½ �½ �xi denotes the jump of a given quantity at x = xi. In

particular, as k(x) is discontinuous at x1 and x2, w0(x) experi-
ences jump-discontinuity at these points. The somewhat formal
derivation of the internal BC at x1 and x2 presented above has a
clear physical meaning that could have been invoked a priori; at
any discontinuity of the linear elastic modulus k, the polymer

retains its integrity, i.e. w(x) is continuous, and the stress (either
torsional or extensional) is continuous, i.e. k(x)w0(x) is continuous.

Similarly, for Lð2Þ one obtains that the internal boundary
conditions at the discontinuity points are

w½ �½ � ¼ w0½ �½ � ¼ kw00½ �½ � ¼ kw000½ �½ � ¼ 0: (16)

The last two conditions physically correspond to continuity of
the mechanical torque and shear force in the polymer.

3.3 The spectrum of permissible wavenumbers qn

The boundary conditions specified above are all linear and
therefore can be summarized concisely in a matrix equation:

M(q;D,x1,x2)
-

A = 0, (17)

where
-

A is the vector of amplitudes and M is a matrix which can
be explicitly calculated. In order to satisfy the boundary condi-
tions simultaneously one must demand detM = 0. The resulting
equation can be solved numerically to find the discrete set of
permissible q’s. For each permissible q, the eigenvectors are
easily found by calculating the kernel of the matrix.

For example, the equation that defines the permissible q’s

for Lð1Þ explicitly reads

0 ¼ Dþ 1

D� 1

� �2

cos q x2 � x1ð ÞðD� 1Þ þ Lð Þ½ �

þ ðDþ 1Þ
ðD� 1Þ cos q x2 � x1ð ÞD� x2 þ x1ð Þ þ Lð Þ½ �

� ðDþ 1Þ
ðD� 1Þ cos q � x2 � x1ð ÞD� x2 þ x1ð Þ þ Lð Þ½ �

� cos q x1 � x2ð Þð1þ DÞ þ Lð Þ½ �:

(18)

This equation can be solved numerically and the first few modes

of Lð1Þ and Lð2Þ are shown in Fig. 2 and briefly discussed in its
caption.

The challenge now is to estimate how the permissible q
values are distributed as a function of the parameters. To this
end, we numerically solve eqn (18) for some range of inclusion
parameters. In Fig. 3 we plot the numerically found wavenum-
bers {qn} as a function of their ordinal number n, when x2 is
varied while x1 and D are fixed. It is seen that for each fixed set
of parameters the spectrum is quasilinear, i.e. that one can
approximately write the n-th wave number as

qn �
C D; x1; x2ð Þ

L
n: (19)

Simple dimensional analysis of eqn (18) shows that C can
neither depend on L nor on kh or ks, except through their ratio
D2.

How can we estimate C(D,x1,x2)? The defining equation, eqn (18),
is a sum of sinusoidal functions with different frequencies. One can
conjecture that the highest frequency, (D� 1)(x2� x1) + L, is the one
that controls the density of solutions. This argument predicts that
the equation for C should read

C ’ pL
ðD� 1Þ x2 � x1ð Þ þ L

¼ p
fDþ 1� f

: (20)
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Fig. 3 demonstrates a numerical verification of this prediction.
Note that C depends on x1 and x2 only through their normalized
difference f, i.e. C does not depend on the location of the
inclusion but only on its relative size. In fact, the same relation
holds also if two or more inclusions are present. In this case C
depends on the total fraction of the polymer which is occupied

by the inclusions (not shown). For the operator Lð2Þ, the analysis
is similar yet more technically involved. The final result, though,
is identical – the wavenumber of the n-th eigenmode is quasi-
linear in n and the proportionality factor is given by eqn (20)
(although the definition of D is different, cf. eqn (6)). Lastly, we
note that the case of a homogeneous polymer, i.e. C = p, is readily
recovered for D = 1 or f = 0.

The constant C provides a closed-form, non-perturbative
approximation for the structure of the spectrum of L. It can
also be derived heuristically using the following reasoning.
Writing the denominator of C as f�D + (1 � f)�1, it is seen
that it is a rule of mixture between D and 1, with relative weights
of f and 1 � f, respectively. In the spirit of eqn (11)–(13), an

eigenmode of either Lð1Þ or Lð2Þ can be written schematically as

wqðxÞ �
eiqx in the stiff regions

eiqDx in the soft regions

(
: (21)

Thus, if we ‘‘stretch’’ the x coordinate in the softer regions by an
amount D, the eigenmode will have the same wavenumber in

Fig. 2 Lowest 4 modes of Lð1Þ (top row) and Lð2Þ (bottom row) and their derivatives. The leftmost panels show the modes and successive panels show
successive derivatives. In cases where the derivatives are discontinuous we plot the derivatives multiplied by the discontinuous k(x), which results in
continuous functions, cf. eqn (15) and (16). As an example, the rightmost panel in the top row shows w0 itself, explicitly demonstrating the discontinuity.
The parameters used here and in what follows are x1 = 0.4L, x2 = 0.8L and D = 1.5. The shaded area shows the region in space where k(x) = ks and it is
readily seen that in this region the wavelength of the modes is shorter.

Fig. 3 (a) The numerically found q values of Lð1Þ as a function of their ordinal number for fixed x1 = 0.05L and D = 5. Different colors correspond to
different values of x2 which varies at constant steps between 0.1L and 0.9L. (b) Colored data points show the slopes of the data in panel (a) as a function of
x2 (following the same color code), and the solid line is the prediction of eqn (20). The black data are obtained using the same procedure, but when
x2 = 0.95L is fixed and x1 varies. (c) The same as (b), but now D is varied and x1 = 0.2L, x2 = 0.8L are fixed. Inset: The same data and color code as in panel (a),
normalized by the predicted value Cn. It is seen that the ratio exhibits significant deviations from unity only for the first few modes.
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both regions. That is, if we define a new variable x̃ by the

differential d~x �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=kðxÞ

p
dx for Lð1Þ and d~x �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=kðxÞ4

p
dx

for Lð2Þ, then w(x̃) has the same wavenumber in all points along
the polymer. However, it is not a pure sinusoidal function
because of the jump conditions at the mechanical discontinuity
points x1 and x2, cf. eqn (15) and (16). Thus, in terms of the
variable x̃ the eigenmodes are those of a uniform system with
some jump conditions on the derivative. This is analogous,
though not strictly equivalent, to the problem of a vibrating
uniform string of length L̃ � L(f�D + (1 � f)�1), with massive
beads attached at the discontinuity points. For the latter,
it is quite intuitive that qn C np/L̃, which is the result of
eqn (20). Note that this heuristic derivation also rationalizes
the fact that C does not depend on the position of the inclu-
sion within the polymer but only on its size x2 � x1. More
generally, for a polymer with multiple soft regions C will depend
only on the total fraction of the polymer occupied by the softer
regions.

Eqn (19) and (20), together with the relation between lq and
qn, provide an analytical description of the spectrum of eigen-
values in the framework of the continuum theory, which is the
major result of this section. In the next section, the corresponding
discrete problem is solved.

4 Eigenmode analysis: discrete theory

In the preceding section the continuum eigenmode problem was
formulated and solved. Here the same problem is addressed
within the corresponding discrete theory, in order to highlight
the similarities and the discrepancies between the two approaches.
Our goal then is to find the eigenmodes -

wq, and their associated
eigenvalues lq, that satisfy H

-
wq = lq

-
wq. As before, we assume the

eigenmodes to be sinusoidal with different wavelengths in the
different regions. That is, we write the discrete analog of eqn (11),
where the k-th component of -

wq is given by

wq

	 

k
�

eiqka in the stiff regions

ei~qka in the soft regions

(
: (22)

For a homogeneous chain it is well known,21 and easily verified,
that this results in a sinusoidal dispersion relation,

lðqÞ ¼ k 2 sin
qa

2

� �h i2
for H ð1Þ;

lðqÞ ¼ k 2 sin
qa

2

� �h i4
for H ð2Þ:

(23)

The allowed wavenumbers for homogeneous systems with the
chosen boundary conditions are

qja ¼ p
j � 1

2

N þ 1

2

; j ¼ 1; . . . ;N: (24)

Since the eigenvalue equation Hijwj = l(q)wi must be satisfied
with the same eigenvalue at all points, the relation between

q and q̃ (i.e. the discrete analog of eqn (12) and (13)) reads
l(q) = l(q̃). This implies

D sin
qa

2

� �
¼ sin

~qa

2

� �
) ~q ¼ 2

a
sin�1 D sin

qa

2

� �h i
; (25)

valid for both H(1) and H(2). This identifies with eqn (12) and (13) to
leading order in qa, but differs substantially for qa of order unity.
Specifically, the sinusoidal functions can give rise to complex wave-
numbers at high qa, that is, to (partially) evanescent eigenmodes.
It is important to stress that this is a fundamental difference
between the discrete and the continuum theories and that the
discrete evanescent eigenmodes do not have a continuum counter-
part. Physically, this happens because q̃ 4 q and therefore it might
happen that at high q the wavelength in the hard region is larger
than the monomeric size a (and thus is allowed), while the
wavelength in the soft region is shorter than a, and will thus be
evanescent. One can see this explicitly by thinking of eqn (25) as an
implicit function defining q̃ in terms of q. As q grows, q̃ grows faster
but this can only happen before the left-hand-side of eqn (25)
reaches unity. For higher values of q there exists no real solution
for q̃. The transition occurs exactly when q̃a = �p, i.e. when the
wavelength in the soft region is comparable to the monomeric size.

The existence of these evanescent high-q modes is numeri-
cally verified, as shown in Fig. 4 along with the full spectrum. It
is seen that the spectrum consists of two parts separated by a
sharp boundary. This boundary corresponds exactly to the division
between evanescent and non-evanescent modes and it occurs at a
critical wavenumber qc which satisfies qca = 2 sin�1(D�1), as
predicted by eqn (25). In fact, for the evanescent modes qn is
linear in n, with a slope that identifies with that of a homo-
geneous chain, cf. eqn (24), when N is replaced by the number
of sites in the hard region, N(1 � f).

The relative amplitudes of the modes in the soft and hard
segments are obtained by imposing continuity requirements at
x1 and x2, which are the discrete analogs of eqn (15) and (16) and
are not written here for brevity. Irrespective of the particular
form of these conditions, they clearly imply that a mode that
decays exponentially for x 4 x1 will have vanishingly small
amplitude in the hard region x 4 x2 and vice versa. That is, the
evanescent modes are localized in either of the two hard regions,
but not both, except in some degenerate cases. This result, which
manifestly holds also for polymers with more than one soft
region, is clearly seen in the inset of Fig. 4. In addition, since the
imaginary part of q̃ is a rapidly increasing function of q (grows asffiffiffiffiffiffiffiffiffiffiffiffiffi
q� qc
p

), the evanescence length of the modes rapidly shrinks
with increasing q, as is also seen in Fig. 4.

With this, the eigenmode analysis in the framework of both
the continuum and discrete theories is completed. Next, the
statistical thermodynamic implications of the obtained results
are explored.

5 Statistical thermodynamics

The statistical theory of fluctuating polymers has been intensively
studied in the literature in various contexts.4,5,22 Our goal here,
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following the analysis of the previous sections, is to understand
the effect of spatial inhomogeneity on these fluctuations6,8

and to elucidate the differences between the continuum and
the discrete approaches to the problem. Specifically, we will
address the dependence of thermodynamic quantities (mainly
the free-energy) on the properties of the inclusion (i.e. f and D)
and on external geometric constraints, along with the associated
fluctuation-induced forces.

A crucial player in theories of Gaussian thermal fluctuations
is the eigenmode spectrum of the relevant dynamical operator.
These spectra were analytically calculated in the preceding sections
for both the continuum dynamical operator and its discrete
counterpart. These calculations fully take into account the internal
spatial inhomogeneity of the polymer, quantified by the normalized
size f and strength D of the inclusion. In addition, in order to
account for prototypical external constraints, we focus on exten-
sional fluctuations (i.e. those governed by U(1)), which are con-
strained by a rigid wall. Specifically, the relative elongation (strain)
of the polymer is restricted to be smaller than e, or equivalently,
that its length is bounded to be smaller than L(1 + e). In the limit
e - N the fluctuations are unconstrained, while otherwise the
available configurations are constrained, which should be explicitly
taken into account in thermal averages. In particular, if the field

w(x) is rendered dimensionless by measuring lengths in terms of L,
the constraint is expressed mathematically by imposing wN o e
in the discrete description and w(L) o e in the continuous one.
Since the results are qualitatively similar for both operators U(1)

and U(2), we perform this analysis only for U(1), as stated above.
Moreover, while for a strong confinement the constraint generically
results in coupling between the bending, twisting and extensional
dynamics, this coupling will be small for short polymers like those
we consider (i.e. of length comparable to the persistence length)
and since the emphasis of this work is on the effects of inhomo-
geneity we do not consider this coupling here.

The main thermodynamic quantity of interest, from which all
statistical thermodynamic properties follow, is the partition func-
tion Z. The parameters f, D and e affect Z in two distinct ways: the
internal constraints, i.e. the properties of the inclusion f and D,
affect the dynamical operator (and thus its spectrum) directly, while
the external constraint e enters by restricting the allowed configu-
rations over which the thermal average is performed. Explicitly,
the partition function Z is given by the functional integral

Z ¼
ð
Dw exp �b wjDðf;DÞjwh i½ �Yðe� wðLÞÞ; (26)

where b � (kBT)�1, kB is Boltzman’s constant, Y is Heaviside’s
step function and D is the dynamic operator, i.e. either L or H(1)

(in the discrete calculation w(L) should be replaced by wN). For
quadratic energy functionals, which is the subject of the pre-
sent discussion, the partition function Z can be explicitly
calculated in terms of Gaussian integrals. The calculation itself
is rather straightforward, yet laborious. The details are given in
the ESI† and here we only discuss the final result in which the
free-energy is expressed as

F � � kBT logZ = Fuc(f,D) + Fe(e,f,D), (27)

where Fuc is the free-energy of the unconstrained chain (i.e. F for
e - N) and Fe is the contribution associated with the external
constraint e. Below we study each of these contributions separately.

5.1 Unconstrained free-energy

The unconstrained free-energy can be expressed in terms of the
eigenvalues as (see ESI† for details)

Fuc ¼
kBT

2
log

detD

kBTð ÞN

" #
¼ kBT

2

X
q

log
lq
kBT

� �
: (28)

Equipped with an approximate expression for the eigenvalues of Lð1Þ

and an analytical expression for det H(1), the above formula can be
evaluated explicitly.† The result, after taking the large-N limit, reads

FDT
uc ¼ NkBT

1

2
log

bkh
L=N

� �
� f logD

� �
;

FCT
uc ¼ NkBT �

1

2
log

bkh
L=N

� �
� log fDþ 1� fð Þ þ log

p
ffiffiffiffi
N
p

e

� �� �
:

(29)

Here and in what follows the superscript DT stands for ‘‘Discrete
theory’’, i.e. the results pertaining to H(1), and CT for ‘‘Continuum

theory’’, i.e. the results pertaining to Lð1Þ.

Fig. 4 Spectrum of the discrete operator H(1). Main panel: the nth wave-
vector qn as a function of the ordinal number n. qn is obtained from the
numerically calculated ln by means of eqn (23). For clarity, only every
5th value is plotted. The orange line shows the continuum prediction of
eqn (19) and (20). The slope of the dashed red line corresponds to a
homogeneous chain of length (1� f)N (see text). The green line shows the

value D sin
qa

2

� �
¼ 1, above which no real solution for q̃ exists, cf. eqn (25).

Insets: A few selected eigenmodes (continuum theory in blue, discrete theory
in red). It is seen that at low q the agreement between the continuum and
discrete theories is perfect, and that at higher q discrepancies emerge. The
discrete 121th eigenmode is the first evanescent eigenmode, with visible
exponential decay in the soft region x 4 x1, i.e. q̃ is complex. The discrete
181th eigenmode is localized in the other hard segment, x 4 x2, with an
evanescence length of monomeric size.
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To gain more insight into the structure and physical content
of eqn (29), we rewrite the unconstrained free-energy as the sum
of the free-energies of the homogeneous segments and an inter-
action energy. That is, we write

Fuc = N(ff (ks) + (1 � f) f (kh)) + Fint, (30)

for both theories, where f (k) is the specific (per monomer) free-
energy of a homogeneous polymer with modulus k, and Fint is the
interaction energy between the soft and hard segments. This form
of writing is common in the context of calculating Casimir-like
fluctuation-induced forces between inclusions,23–25 to be discussed
below. In this representation, we need to calculate the homogeneous
polymer free-energies in the two theories, which take the form:†

fDTðkÞ ¼ 1

2
kBT log

bk
a

� �
;

f CTðkÞ ¼ 1

2
kBT log

bk
a

� �
þ kBT log

p
ffiffiffiffi
N
p

e

� �
:

(31)

We note that the two theories agree quantitatively on the specific
free-energy, up to a logarithmic factor in N. The latter actually
implies that the free-energy in the continuum theory is not strictly
extensive, an issue that pertains already to the continuum theory
of homogeneous systems and is not discussed here. Eqn (29)–(31)
indicate that the interaction energy in the two cases reads

FDT
int ¼ 0; FCT

int ¼ NkBT log
Df

fDþ ð1� fÞ

� �
; (32)

revealing fundamental differences between the two theories.
This non-trivial result means that the discrete theory predicts
the free-energy of an inhomogeneous polymer to be simply the
sum of the free-energies of the soft and hard regions without any
interaction. In fact, this holds for an arbitrary choice of ki, not
necessarily the hard-soft-hard configuration described here.† In
contrast, the continuum theory predicts a non-trivial dependence
of the free-energy on the inclusion parameters. The analytical
results in eqn (27)–(32) are all corroborated against explicit
numerical calculations, as shown in Fig. 5.

This discrepancy in the free-energy can be manifested in
measurable quantities, such as the configurational contribution
to the fluctuation-induced force qfF. Physically, this force corre-
sponds – e.g. in the case of cofilin-mediated softening of actin
filaments, where local softening of the actin polymer is induced
by the adsorption of cofilin molecules from the solvent10 – to the
fluctuation-induced contribution to an adsorption force. The
latter also includes other contributions, e.g. the binding energy,
the change in the solvent mixing entropy and the entropy
associated with placing the inclusion at different locations along
the polymer, which are of no interest in the present context.

As we focused here on the unconstrained free-energy Fuc, we
calculate first wf � qfFuc, which takes the form

wDT
f ¼ �NkBT logD; wCTf ¼ �NkBT

D� 1

ðD� 1Þfþ 1
: (33)

Later on we will show that the contribution of Fe to this force,
qfFe, is the same for both theories. wDT

f and wCT
f of eqn (33) agree

only in the limit of very small mechanical contrast, D - 1, but
otherwise significantly differ, highlighting a stark discrepancy
between the continuum and discrete theories. This discrepancy
will be extensively discussed in Section 6. Before that, we study
the free-energy associated with the external constraint e and see
whether similar discrepancies persist there too.

5.2 External-constraint-related free-energy

The contribution of the external constraint to the free-energy,
Fe, can be explicitly calculated† and takes the form

Fe ¼ kBT log 1þ erf e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bkeff ðf;DÞ

2L

r !" #
: (34)

This expression for Fe is valid for both the continuum and
discrete theories, where the effective modulus that depends on
the inclusion parameters keff(f,D) takes the form

kDT
eff ðf;DÞ ¼

f
ks
þ 1� f

kh

� ��1
¼ kh

fD2 þ ð1� fÞ;

kCTeff ðf;DÞ ¼ kh
X
q

uqðLÞ
qL

� �2
" #�1

;

(35)

in the two theories. erf(�) in eqn (34) is the error function. Note
that for a homogeneous polymer, i.e. D = 1 or f = 0, kDT

eff identifies
with the bare modulus of the polymer.

Since the two theories predict the same functional form for
Fe, differences between them can emerge only due to possible
differences between kDT

eff and kCT
eff. We thus need to compare

these two. kDT
eff in eqn (35) is exactly the effective macroscopic

k of a chain of microscopic springs connected in series. To better
understand kCT

eff and its relation to kDT
eff , we define kCT

n as the
partial sum over eigenmodes

kCTn ¼ kh
Xn
i¼1

uqi ðLÞ
qiL

� �2
" #�1

: (36)

In this way we can quantify the contribution of eigenmodes of
increasing wavenumber to kCT

eff. In Fig. 6c we plot the deviation
of kCT

n /kDT
eff from unity as a function of the number of modes n.

Fig. 5 The total free-energy (left) and the interaction free-energy (right)
as a function of f for e-N. The solid lines show the analytical predictions of
eqn (27)–(32) and the data points correspond to direct numerical calculations.
The small negative deviation of the continuum theory prediction for Fint from
the numerical results emerges from using Stirling’s approximation, which can
be eliminated by taking higher order corrections (not shown).
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It is observed that kCT
n converges to the discrete theory prediction

kDT
eff after summation over a sub-extensive number of modes.

That is, the two theories essentially predict the same effective
modulus keff and consequently the same Fe. This agreement,
contrasted with the discrepancy in the two predictions for Fuc,
will be discussed in Section 6.

Before concluding this subsection, let us briefly comment
on the structure of Fe, which has a neat physical interpretation.
Let us consider the internal energy Ue = �qb(bFe) (which is the
same for both the continuum and discrete approaches), which
reads

bUeðxÞ ¼ �
e�x

2
xffiffiffi

p
p

1þ erfðxÞ½ �; (37)

where the notation x � e

ffiffiffiffiffiffiffiffiffiffi
bkeff
2L

r
was introduced. We note that the

internal energy associated with the unconstrained free-energy,
qb(bFuc), trivially equals 1

2NkBT according to the equipartition
theorem. Consequently, Ue in fact measures the deviation of the
internal energy from the background thermal energy predicted by
equipartition.

In the limit of large x, Ue(x) vanishes, as expected (i.e. the
polymer is essentially unconstrained). In the limit of large
negative x (note, though, that e is physically bounded from below
by �1), we have

Ueðx! �1Þ ’ kBT x2 þ 1

2

� �
¼ keff

2L
e2 þ kBT

2
: (38)

In this limit, the polymer is under compression and responds
predominantly elastically, i.e. its internal energy varies as e2 with
a prefactor is proportional to the effective modulus keff. Note that
the ordinary compression-extension elastic symmetry, i.e. sym-
metry under e-�e (x-�x), is broken here since the confining

wall is not attached to the polymer. All of the properties of Ue(x)
are shown in Fig. 6a. When x is not very negative Fe is entropic in
nature and vanishes for T - 0 (recall that the persistence length

of a homogeneous polymer is bk, hence the factor
bkeff
2L

can be

interpreted as the number of times the effective persistence
length enters in the size of the polymer).

The thermodynamic force related to the external constraint,
we � qeF, is a measurable physical quantity (e.g. the pressure on
a confining wall) that can also be calculated. It is plotted in
Fig. 6b, where it is seen that for negative values of e near �1 it is
linear and its origin is predominantly elastic, as expected from
the preceding discussion, while it decays to zero when e - N.
For intermediate positive values it is a fluctuation-induced force
and the transition between the elastic and fluctuation-induced
regimes is not sharp, but is rather smoothed by temperature.
Clearly, for T - 0 the force is strictly linear at e o 0 and strictly
vanishes for e 4 0.

Next, we turn to discuss the relation between the continuum
and discrete theories in the light of the results obtained up to now.

6 Validity of the continuum theory

In the previous section we saw that various statistical thermo-
dynamic properties of inhomogeneous polymers reveal signifi-
cant differences between the continuum and discrete theories.
That is, the interaction free-energy between the soft and hard
segments in eqn (32) and the fluctuation-induced adsorption
force in eqn (33) feature qualitative discrepancies between the
continuum and discrete theories, except for the small contrast
limit D - 1, where FCT

int E FDT
int = 0 and wCT

f E wDT
f B D � 1. In

particular, FDT
int = 0 identically, while its continuum counterpart

is a non-trivial function of f and D, cf. eqn (32). A corollary is

Fig. 6 (a) The internal energy Ue related to the external constraint e (solid line), cf. eqn (37), and the elastic energy with effective modulus keff (dashed line),
cf. eqn (38), as a function of the dimensionless coordinate x. The elastic energy is plotted also for x 4 0, corresponding to extension, though no elastic
behavior is physically observed in this regime as the confining wall is not attached to the polymer. (b) The thermodynamic force we as a function of e for
varying values of the dimensionless combination bkeff/L. While results for eo �1 are outside of the physically accessible range and hence are plotted as thin
dashed lines, they provide good approximations to the behavior of the free-energy in the physical range e \ �1. (c) The convergence of the continuum
theory prediction for keff towards the discrete theory prediction of eqn (35). The plot shows the relative deviation 1 � kCT

n /kDT
eff, where the partial sum kCT

n is
defined in eqn (36), as a function of the number of summed eigenmodes n. The purple data correspond to the same parameter values used throughout the
paper, e.g. Fig. 2, and other colors correspond to one parameter being changed each time, as stated in the legend. It is observed that a convergence to
within 1% is achieved after summing over the first B10 modes for all parameters tested.
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that wCT
f depends on f, while wDT

f is independent of it, cf. eqn (33).
We stress that these discrepancies are not mitigated when the
discretization length is taken to zero, when a different ultra-violet
cutoff is used or when the variation of k(x) is smoothed out.†
What can one make of these discrepancies?

Obviously, the continuum analysis of the eigenmodes and
eigenvalues of the inhomogeneous polymer, which is the basis
for any statistical thermodynamic calculation in the Gaussian
approximation, is strictly valid only for small wavenumbers
qa { 1. This is true in general and has been analytically
demonstrated in Sections 3 and 4, revealing qualitative differences
in the eigenmode and eigenvalue spectra of the continuum and
discrete operators at large wavenumbers. This by itself does not
invalidate the continuum approach. The pertinent question
then is whether a given physical observable is dominated by
small wavenumbers, in which case the continuum approximation
is valid.

The results of Section 5 indicate that this is not the case.
Beyond the directly observed differences between the continuum
and discrete results themselves, this can be inferred from the
continuum result alone. Let us go back to eqn (30); the first two
contributions to the (unconstrained) free-energy on the right-
hand-side are ‘‘bulk’’ contributions, i.e. terms that scale with the
total size of the soft segment fN and the two hard segments
(1 � f)N. Since N B L/a B Lqmax, where qmax is the UV-cutoff,
these contributions depend explicitly on the large wavenumbers
and in general are not expected to be correctly described by the
continuum theory (we note again that the fact that the conti-
nuum ‘‘bulk’’ free-energy is not even strictly extensive in our
case, cf. the second equation in (31), is not discussed here). The
important point is that in the thermodynamic limit, where
qmax -N, these ‘‘bulk’’ contributions diverge and are commonly
eliminated in standard calculations.25,28

We are then left with the last term on the right-hand-side of
eqn (30), FCT

int, the interaction free-energy between soft and hard
segments. The result in eqn (32) shows that the interaction free-
energy also scales with N B qmax and hence depends explicitly
on the UV-cutoff, marking the breakdown of the continuum
theory in this case. Consequently, the continuum result for the
fluctuation-induced adsorption force, wCT

f in eqn (33), scales
with the system size N and is therefore not dominated by small
wavenumbers. This should be contrasted with Casimir-like
fluctuation-induced forces in which the interaction energy depends
on a geometric degree of freedom, e.g. the separation between
two plates, but is independent of qmax.28,29 In this case, after the
divergent ‘‘bulk’’ contributions are removed, a continuum-level
fluctuation-induced force is identified by taking the derivative
of the interaction free-energy with respect to the geometric degree
of freedom. It is important to note that a physically realistic
fluctuation-induced adsorption force does exist in our problem
and is given by the discrete theory result wDT

f in eqn (33). In this
context, we note that recent works have successfully used con-
tinuum theory (utilizing the Green’s function approach) to calcu-
late the interaction between imposed bending angle inclusions in
a worm-like-chain model.26,27 Unlike wf, the continuum approach
does not fail in this case because the Green’s function that

they use, i.e. the response of the polymer to an imposed bending
angle at a given point, is not dominated by large q contributions,
in line with the current discussion.

The continuum analysis presented above bears some similarity
to the Debye model of the specific heat of homogeneous systems.
There, similarly to the main panel of Fig. 4, a continuum-level
linear spectrum of wavenumbers replaces the nonlinear spectrum
of the discrete theory (both agree of course for qa { 1), keeping
the total number of eigenmodes the same. When coupled to the
Bose–Einstein statistics for the occupation number the heat
capacity features the famous T3 behavior at low T. There are two
major differences between Debye’s analysis and ours; first, our
analysis was strictly classical, not taking into account quantum
effects such as those incorporated into the Bose–Einstein dis-
tribution. This makes a difference because the latter provides a
physical UV cutoff that at low T assigns negligible weight to the
high-q modes for which the continuum theory is invalid. Second,
as we explicitly demonstrated, spatial inhomogeneity gives rise to
differences between the continuum and discrete eigenmodes/
eignevalues, which are not encountered in spatially homo-
geneous systems.

In contrast to wf, the fluctuation-induced force associated
with an external constraint – we derived from Fe of eqn (34) – does
not depend on qmax and the continuum and discrete predictions
coincide. That is, this fluctuation-induced force is properly
described by the continuum theory. The reason for this is that
in this case the relevant fluctuations are shape fluctuations,
which are dominated by small wavenumbers (since the amplitude
of the eigenmodes decays with increasing q). Mathematically
speaking, this property is encapsulated in the fact that kCT

eff of
eqn (35), which is expressed as a sum over wavenumbers,
converges to kDT

eff of eqn (35) after summing over the first few
smallest wavenumbers, as shown in Fig. 6.

7 Concluding remarks

In this paper we studied the mechanics and statistical thermo-
dynamics of semiflexible inhomogeneous polymers. We focused
on inhomogeneity in the form of a soft inclusion embedded
inside a stiffer/harder polymer, and considered torsional, exten-
sional and bending Gaussian fluctuations. The analytical results
for the eigenmode and eigenvalue spectra of both the continuum
and the corresponding discrete dynamical operators were derived.
The analysis revealed qualitative differences between the conti-
nuum and discrete spectra. Most notably, it was shown that above
a certain wavenumber, the discrete spectrum of wavenumbers qn

changes qualitatively and the discrete modes become evanescent
inside the soft inclusion, having no continuum counterparts.

Based on the eigenmode and eigenvalue analysis, we derived
explicit expressions for two types of fluctuation-induced forces
in the framework of both the continuum and discrete theories.
One fluctuation-induced force is associated with variations of
the properties of the inclusion, i.e. its size and strength. This
entropic force describes, for example, the fluctuation-induced
contribution to the adsorption of molecules that give rise to the
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soft inclusion. Another fluctuation-induced force is associated
with an external geometric constraint, i.e. a confining wall with
variable positions. This entropic force describes the pressure
applied by the fluctuating polymer on the wall.

It was shown that the first fluctuation-induced force is
dominated by contributions from modes with large wavenumbers,
where the continuum and discrete spectra significantly differ, and
hence that the continuum theory breaks down. On the other hand,
the second fluctuation-induced force was shown to be dominated
by small wavenumber shape fluctuations and hence is properly
described by the continuum theory. The results show that while
the continuum theory of inhomogeneous polymers may be
successful in some cases, it fails in others, and should be taken
with some caution.
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