
RAPID COMMUNICATIONS

PHYSICAL REVIEW E 91, 060103(R) (2015)

Spatial distribution of thermal energy in equilibrium
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The equipartition theorem states that in equilibrium, thermal energy is equally distributed among uncoupled
degrees of freedom that appear quadratically in the system’s Hamiltonian. However, for spatially coupled degrees
of freedom, such as interacting particles, one may speculate that the spatial distribution of thermal energy
may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous
or disordered systems. Here we show that for systems undergoing simple Gaussian fluctuations around an
equilibrium state, the spatial distribution is universally bounded from above by 1

2 kBT . We further show that in
one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled
degrees of freedom in the thermodynamic limit and that in higher dimensions nontrivial spatial distributions
emerge. Some implications are discussed.
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Equilibrium thermal fluctuations play a key role in physics,
chemistry, and biology and the framework that captures their
properties, statistical thermodynamics, is a central branch of
physics. One of the renowned results obtained in this field
is the equipartition theorem [1], which in its simplest form
states that the total thermal energy of the system is equally
distributed among its uncoupled degrees of freedom (DOFs).
In addition, each uncoupled DOF appearing quadratically in
the Hamiltonian has on average an energy of 1

2kBT , where kB is
the Boltzmann constant and T is the absolute temperature [1].

The equipartition theorem holds only for uncoupled DOFs
and strictly speaking does not state anything about the
energy of coupled DOFs. Quadratic Hamiltonians can always
be decomposed into a set of uncoupled DOFs (mutually
orthogonal normal modes) and the theorem applies to them.
It is intriguing, though, to ask in all generality whether the
average potential energy of coupled DOFs can significantly
deviate from the value predicted by equipartition. Put simply,
we ask what can be said in general about the spatial distribution
of thermal energy.

One may speculate that a localized enhancement or inhibi-
tion of thermal energy may have some effect on various local
processes. For instance, if local thermal fluctuations activate
chemical reactions, these might be facilitated or hindered
in the presence of enhanced or reduced fluctuations. Other
processes that might be affected are structural changes, such
as severing of biopolymers [2,3]. Related effects may also
be observed in elastic-network models of protein folding,
where local (nearest-neighbor) fluctuations are assumed to
dictate bond rupture [4]. We note that while much attention
has been devoted to the effect of disorder on nonequilibrium
transport properties (see, e.g., [5–7]), here we explore the
spatial distribution of thermal energy strictly in equilibrium.

As a prelude, we begin by solving a very simple problem,
depicted in Fig. 1. Consider a system of two particles inter-
acting via linear springs with each other and with bounding
walls. Its potential energy is

U =
3∑

α=1

εα = 1

2
k1x

2
1 + 1

2
k2(x2 − x1)2 + 1

2
k3x

2
2 , (1)

where εα is the energy of the αth spring and the xi denote the
deviation of the ith particle from its equilibrium position (when

FIG. 1. Model system of two masses and three linear springs,
connected in series between fixed walls. Here xi measures the
deviation of the ith particle from its equilibrium position.

possible, we adopt the convention that latin indices denote
DOFs, while greek indices denote interactions). In Eq. (1) we
assume that the rest length of the entire chain is identical to
the distance between the bounding walls. As is typical in such
systems, the kinetic energy

∑
i

1
2miẋ

2
i is a sum of quadratic

uncoupled terms. Thus, diagonalizing the kinetic contribution
is trivial and hence in what follows we disregard the kinetic
energy of the system.

What is the average energy stored in the αth spring? In
particular, can it significantly deviate from the value predicted
by equipartition? For such a simple system the answer is
readily calculable through the correlations between the xi .
For example, 〈ε2〉 is given by

〈ε2〉 =
〈
k2

2
(x2 − x1)2

〉
= k2

2

(〈
x2

1

〉 + 〈
x2

2

〉 − 2〈x1x2〉
)
,

where 〈·〉 denotes thermal averaging. Since the energy is
quadratic, the correlation matrix C is given in terms of the
Hamiltonian H by [1]

Cij = 〈xixj 〉 = kBT (H−1)ij , (2)

where the Hamiltonian (or the Hessian) is defined as Hij ≡
∂2U

∂xi∂xj
. With these formulas, an explicit calculation yields1

〈εα〉 = 1

2
kBT

[
1 − k−1

α

k−1
1 + k−1

2 + k−1
3

]
. (3)

1Whenever H is noninvertible, i.e., in the presence of Goldstone
modes, the notation H−1 should be interpreted as the Moore-Penrose
pseudoinverse [8,9]. See Ref. [10] for details.

1539-3755/2015/91(6)/060103(5) 060103-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.91.060103


RAPID COMMUNICATIONS

YOHAI BAR-SINAI AND ERAN BOUCHBINDER PHYSICAL REVIEW E 91, 060103(R) (2015)

A few insights can be gained from this very simple example.
First, a clear-cut answer is given to the question presented
above: For a general choice of the kα , the thermally averaged
energy of a given spring may differ from the value predicted
by equal partition. Second, since the system consists of two
DOFs (i.e., the Hamiltonian has two normal modes), each
contributes 1

2kBT to the total energy and thus
∑

α〈εα〉 = kBT ,
as expected. That is, the spatial average of the energy agrees,
by construction, with the equipartition theorem and reads
(N + 1)−1 ∑

α〈εα〉 = 1
3kBT (with N = 2). Third, we note that

〈εα〉 is bounded between 0 and 1
2kBT , which means that

inhomogeneity in the kα might either increase or decrease
it relative to the spatially average value of 1

3kBT , depending
on the inhomogeneity. Finally, we note that for a homogeneous
system, i.e., kα = k, the energy is equally partitioned among
the springs and equals 1

3kBT .
These results might appear somewhat restricted as they

involve a system with a small number of DOFs N = 2 and
involve specific boundary conditions that may play a nontrivial
role, especially in a small system. Consequently, we next
aim at understanding how the spatial distribution of thermal
energy depends on the number of DOFs and on the boundary
conditions.

We first consider a system of N DOFs x = (x1, . . . ,xN )T

and N + 1 springs. The potential energy is

U =
N+1∑
α=1

εα, εα = 1

2
kα(xα − xα−1)2, (4)

where 1 � α � N + 1, εα is the potential energy of the αth
spring, and the kα are non-negative constants. Formally, Eq. (4)
makes reference to x0 or xN+1. These are not real DOFs but
rather boundary conditions imposed by the fixed walls and
should be taken as x0 = xN+1 = 0. The general question that
we pose is what can be stated about the distribution of 〈εα〉,
for general kα .

The conventional procedure for addressing such a question
is to diagonalize the Hamiltonian H and work in the basis
of its normal modes. Then 〈εα〉 can be reconstructed, at
least conceptually, by summing over the contributions of the
individual modes [e.g., Eq. (9) in [11]]. While this generic
recipe is very useful in most cases, in this case working with
the normal modes obfuscates the structure of the problem,
since there is no simple way to describe them for a general
distribution of the kα .

What is then a useful basis to work with? To answer
this question we first note that for any linear change of
variables x̃ ≡ Ax, where A is an invertible N × N matrix,
the modified Hamiltonian takes the form H̃ = A−T H A−1,
where A−T stands for (A−1)T (note that this is not a similarity
transformation, as A is not orthogonal). Straightforward matrix
manipulations show that even for the nonorthogonal variables
x̃ the correlation matrix is given by the inverse of the relevant
Hamiltonian, i.e., C̃ ≡ 〈x̃ x̃T 〉 = kBT H̃

−1
. The main insight

gained from this brief discussion is that one should not be
constrained to using an orthogonal basis in transforming the
Hamiltonian into a desired form. This turns out to be important
for solving the problem at hand.

Following this insight, we look for new variables x̃ ≡ Ax
such that H̃ will be, loosely speaking, almost diagonal. A clue
for finding a useful basis is obtained by inspecting Eq. (4),
which is already written in an almost diagonal form, if we
identify the new variables simply as x̃i ≡ xi − xi−1. That is,
we take the combinations that make up the interactions as the
new variables. This defines the transformation matrix Aij ≡
δij − δi,j+1.

Under this choice of nonorthogonal variables, almost all of
the spring energies in Eq. (4) become εα = 1

2kαx̃2
α . The last

relation, however, is valid only for 1 � α � N . Clearly, a one-
to-one correspondence between the DOFs and the interactions
(springs) is impossible since the number of springs exceeds N .
Indeed, an explicit calculation shows that in terms of the new
variables the energy is not strictly decoupled, but only almost,

U =
N∑

α=1

1

2
kαx̃2

α + 1

2
kN+1(x̃1 + · · · + x̃N )2,

H̃ij = kiδij + kN+1 or H̃ = K + kN+1 b̃b̃
T
,

(5)

where K ≡ diag(k1, . . . ,kN ) and b̃ is a vector of 1’s.
Equation (5) is very useful since the inverse H̃

−1
is readily

calculated using the Sherman-Morrison formula [12], which
can be expressed in the form

(H + kvvT )−1 = H−1 − H−1vvT H−1

k−1 + vT H−1v
(6)

and is valid whenever both H and H + kvvT are invertible
(here v is a vector and k is a scalar). Applying this formula to
Eq. (5), we obtain the generalization of Eq. (3) to any N

〈εα〉 = 1

2
kBT

[
1 − (N + 1)−1 k−1

α

〈〈k−1〉〉
]
, (7)

where 〈〈k−1〉〉 ≡ (N + 1)−1 ∑
α k−1

α is the quenched average.
Two features of this result will prove important. First, it

can be seen that 〈εα〉 < 1
2kBT regardless of the choice of

kα (moreover, the order in which the kα are distributed in
space makes no difference and 〈εα〉 depends only on k−1

α

and the average 〈〈k−1〉〉). Second, it is evident that 〈εα〉 tends
towards 1

2kBT in the thermodynamic limit N → ∞, as long
as k−1

α /〈〈k−1〉〉 does not increase with N .
Our next task is to generalize Eq. (7). It will be shown that

these two features are general for a wide class of physical
systems, namely, systems with local interactions undergoing
Gaussian fluctuations around a stress-free equilibrium. As
we will show, for these systems 1

2kBT is a strict upper
bound for 〈εα〉. This result is entirely general, independent
of dimensionality or interaction range. Second, the fact
that 〈εα〉 = 1

2kBT plus a negative correction of order N−1,
which depends on the inhomogeneity, is the general rule
for one-dimensional systems with short-range interactions. In
particular, in such systems the distribution of thermal energy
becomes spatially constant in the thermodynamic limit. These
are two main results of this work.

Consider a system with N DOFs and total energy U =∑n
α=1 εα , where n is the number of interactions. The most
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general expansion of εα in the DOFs reads

εα = ε
(α)
0 +

∑
i

F
(α)
i xi + 1

2

∑
i,j

xiC
(α)
ij xj + O(x3). (8)

The linear term vanishes under thermal averaging as long
as anharmonic contributions to the energy are neglected
and hence is omitted hereafter (note that

∑
α F

(α)
i = ∂U/∂xi

vanishes due to global equilibrium). The only assumption we
adopt is that

∑
i,j xiC

(α)
ij xj can be written as (

∑
iBαi xi)2, where

B is an n × N matrix that describes the interactions in the
system [for example, B can be easily read off Eq. (4)]. In this
case, the Hamiltonian is given by H = BT B.

This is a generic form of local interaction energies for a
broad class of physical systems. (i) In discrete field theories,
or discrete approximations to continuum field theories, the
energy density takes the form [L(f )]2, with some spatial linear
differential operator L and field f . Relevant examples include,
among many others, the Euler-Bernoulli theory of elastic
beams [13], the Föppl–von Kármán theory of thin sheets [13],
and the Helfrich theory of membrane elasticity [14]. (ii)
In systems of discrete particles interacting via a radially
symmetric pairwise potential, at equilibrium all particle pairs
are at a stress-free configuration. Relevant examples include
glassy systems near jamming [15] and elastic networks [4].

Using Eq. (2), 〈εα〉 can be readily expressed in terms of the
interaction matrix B, as

〈εα〉 = 1
2kBT Pαα, P ≡ B(BT B)−1 BT . (9)

The matrix P is an orthogonal projection operator [9], since
P2 = P (this holds even when BT B is not invertible [10]).
Note that Pαα refers to the αα diagonal element of P, and no
summation is implied. A general property of such operators is
that all their elements are smaller than unity in absolute value.
We thus prove a central result of this work, i.e., that

〈εα〉 = 1
2kBT Pαα � 1

2kBT . (10)

The rank of P , which equals that of H and B, carries
important information. For example, since P is a projection
operator that works in a space of dimension n, in the
case that rank(P ) = n we can immediately conclude that
P is the identity and thus 〈εα〉 = 1

2kBT identically. This
happens whenever the rows of the interaction matrix B
are linearly independent (and in particular n � N ). The
case n = N , for nearest-neighbor interactions, corresponds to
isostatic systems, i.e., systems where the number of constraints
(interactions) equals the number of DOFs [15].

Equation (10) puts strict bounds on the possible values of
〈εα〉, but much more can be said about the behavior within these
bounds. Specifically, we can derive the analog of Eq. (7) in
the general case of one-dimensional systems with short-range
interactions. The detailed derivation can be found in [10] and
it follows verbatim the structure of the derivation of Eq. (7),
as outlined here: For one-dimensional systems, where each
DOF interacts with its m nearest neighbors, the number of
interactions generally exceeds the number of DOFs by m. A
nonorthogonal transformation is used to put the Hamiltonian

into the form H̃ = K + ∑
α kα b̃α b̃

T

α , where K is diagonal and
the second term is a sum over the m excess interactions. Then
the Sherman-Morrison formula is iteratively applied m times

to calculate the inverse. Because of the short-range nature of
the interactions, the magnitude of the nondiagonal correction
to H̃

−1
is of order m/N and vanishes in the thermodynamic

limit. Thus, 〈εα〉 = 1
2kBT + O(N−1).

This is another central result of this work: In one-
dimensional systems with short-range interactions, the spatial
distribution of thermal energy becomes essentially flat in the
thermodynamic limit. The crux of the argument lies in the fact
that the number of interactions does not greatly exceed the
number of DOFs and that the ratio between them approaches
unity in the thermodynamic limit.

Returning to the problem of the spring-mass chain and
having solved the problem of the N dependence for fixed
boundary conditions, we now turn to explore the effect
of boundary conditions for a fixed N . For instance, semi-
fixed boundary conditions can be obtained by removing the
constraint of one of the walls, by setting, say, k1 = 0. In
doing so we obtain n = N independent interactions and thus
〈εα〉 = 1

2kBT is identically constant for any N . Fully free
boundary conditions are obtained by setting both k1 and kN+1

to zero and give rise to a single Goldstone mode (uniform
translation). In this case we have n = N − 1 independent
interactions and again 〈εα〉 is identically constant [clearly, both
these results can also be obtained by properly taking limits of
Eq. (7)]. This also shows that in one-dimensional systems the
effect of boundary conditions in nonlocal, i.e., every spring in
the system is affected by the bounding walls.

The general approach discussed above can be applied
to different types of interactions. For example, bending
fluctuations are described by local interactions of the form
εα = 1

2κα(xα−1 − 2xα + xα+1)2, where the κα are the local
bending rigidities. Identical arguments show that in a chain
with free boundary conditions, the spatial distribution of
bending fluctuational energy is exactly constant, regardless
of the choice of the κα .

This result offers the first application of the theoretical
development described in this paper, as it seems to refute
a recently conjectured mechanism for severing of actin fila-
ments, one of the most important and ubiquitous biopolymers
in eukaryotic cells [16]. In [17–19] it was hypothesized
that thermal energy may be concentrated at the boundaries
between relatively softer and stiffer regions of the biopolymer
(softening is induced by a different molecule, cofilin, which
partially binds actin [17,20]) and that the excess thermal energy
is responsible for the experimentally observed preferential
severing near these boundaries. Our result shows, at least
within the framework of a discrete description of quadratic
bending fluctuations, that no such energy concentration takes
place.

What happens in higher dimensions? As the crux of the
argument lies in the relative number of DOFs and interactions,
dimensionality appears to be crucial. In fact, in dimensions
higher than one the argument seems to fail qualitatively as
generally there are significantly more interactions than DOFs.
In this case, we also expect local topological variations, bond
strength disorder, defects, holes, free boundaries, and the like
to play a role.

To see this, consider a hexagonal portion of a two-
dimensional triangular lattice of 1

2N particles (which amounts
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FIG. 2. (Color online) Average thermal energy 〈εα〉 (in units of
kBT ) as a function of kα/〈〈k〉〉 for a hexagonal portion of a two-
dimensional triangular lattice. The data are partitioned into bulk (blue)
and boundary springs (yellow) (cf. the inset). Spring constants are
distributed normally with mean 1 and variance 0.3. Each side of the
hexagon consists of 20 springs, which means N = 2522 (a smaller
system, with 3 springs on each side and N = 74, is shown in the inset
for illustration). No quantitative change was observed with increasing
N . The points show data from 30 realizations and the solid lines are
guides to the eye. The dashed line shows the asymptotic value 1

3 ,
corresponding to 〈εα〉 in the bulk of a homogeneous triangular lattice
in the thermodynamic limit.

to N DOFs), interacting via linear springs, as shown in the
inset of Fig. 2. Clearly, in the limit of large systems the
number of springs n approaches 3

2N . When all of the springs
are identical, i.e., with no bond strength disorder, we expect
the average energy of a spring far from the free boundary to
approach 〈εα〉 ≈ 1

2kBT × N
n

→ 1
3kBT (this was verified by an

explicit calculation). There is no reason, however, to expect
the thermal energy to be spatially uniform in the presence of
inhomogeneities, either in the lattice topology or in the bond
strength.

To test this, we considered the lattice in the inset of
Fig. 2 with bond strength disorder, where the kα are normally
distributed.2 Here 〈εα〉 is plotted vs kα in the main panel,
where the average energy of bulk springs in a homogeneous
system 1

3kBT is shown as well. Bulk and boundary springs
are distinguished. Several key observations can be made. (i)

2To keep the springs constants positive, we used kα = max(κi,κm),
where κi are normally distributed and κm > 0 is a small cutoff that
has little influence on the results.

Unlike in one-dimensional systems, thermal energy spans
the whole interval between 0 and 1

2kBT , both below and
above the homogeneous system bulk value 1

3kBT . (ii) The
average thermal energy 〈εα〉 appears to vary systematically
with the local spring strength kα . (iii) Boundary springs
have higher energy than bulk springs. This is a purely
topological effect in which boundary springs have fewer
neighbors than bulk springs, an effect that persists near free
boundaries in fully ordered systems. In general, disordered
systems (e.g., glassy ones [15]) feature also bulk topological
disorder.

In summary, in this work we posed a basic question in
statistical physics: What is the spatial distribution of thermal
energy in equilibrium? We showed that under the stated
conditions it is strictly bounded between 0 and 1

2kBT and that
for one-dimensional systems with short-range interactions the
spatial distribution of thermal energy becomes essentially flat
in thermodynamic limit, even for highly disordered systems.
The crux of the derivation lies in the fact that in one-
dimensional systems the number of interactions is the same
as the number of DOFs, up to an additive constant that is
negligible in the thermodynamic limit. In higher dimensions
this does not hold, as was explicitly demonstrated in a specific
example. Systematically unraveling the relations between the
spatial energy distribution and dimensionality, the system’s
geometry, and the form of disorder is a theoretical challenge
for future work.

The most outstanding question that emerges from this work
is what the influence of the spatial distribution of thermal
energy on various physical processes and quantities might
be. If local energy fluctuations can affect local process, as
was suggested, for example, in the context of bond rupture
in elastic-network models of protein folding [4], then one
can imagine the possibility of tailoring high-dimensional
systems in order to enhance or reduce thermal fluctuations
in defined locations, to control local processes of interest.
Another important future direction would be to explore the
roles played by stresses (both internal and external).
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