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The onset of frictional instabilities, e.g. earthquakes nucleation, is intimately related to velocity-
weakening friction, in which the frictional resistance of interfaces decreases with increasing slip
velocity. While this frictional response has been studied extensively, much less attention has been
given to steady-state velocity-strengthening friction, in spite of its importance for various aspects
of frictional phenomena such as the propagation speed of interfacial rupture fronts and the amount
of stored energy released by them. In this note we suggest that a crossover from steady-state
velocity-weakening friction at small slip velocities to steady-state velocity-strengthening friction at
higher velocities might be a generic feature of dry friction. We further argue that while thermally
activated rheology naturally gives rise to logarithmic steady-state velocity-strengthening friction,
a crossover to stronger-than-logarithmic strengthening might take place at higher slip velocities,
possibly accompanied by a change in the dominant dissipation mechanism. We sketch a few physical
mechanisms that may account for the crossover to stronger-than-logarithmic steady-state velocity-
strengthening. Finally, we compile a rather extensive set of experimental data available in the
literature, which lends support to these ideas.

I. INTRODUCTION

Understanding the constitutive behavior of dry fric-
tional interfaces has far-reaching implications for a broad
range of phenomena and scientific disciplines [1–12]. It
is well-established that the onset of frictional instabili-
ties, which might lead to interfacial failure (e.g. earth-
quakes), is intimately related to weakening effects, i.e.
the reduction of frictional resistance with increasing slip
displacement or slip velocity. In particular, when the slip
velocity v is regarded as a basic frictional control vari-
able, the variation of the steady-state frictional resistance
with v is of great importance. Naturally, steady-state
velocity-weakening (denoted hereafter as SVW) friction
has been studied extensively. On the other hand, much
less attention has been given to steady-state velocity-
strengthening (denoted hereafter as SVS) friction, in
which the steady-state frictional resistance increases with
increasing v. This behavior might affect, for example,
the propagation speed of rupture fronts, their propaga-
tion distance and the amount of stored energy released
by them. Our goal in this note is to discuss SVS friction,
its functional form and possible physical origins, and to
point out direct evidence for its existence based on ex-
perimental data available in the literature.

The interface between two macroscopic bodies in dry
frictional contact is typically composed of an ensemble of
contact asperities whose total area Ar is orders of magni-
tude smaller than the nominal contact area An. The real
contact area typically depends on the time elapsed since a
contact was formed, i.e. on the contact’s “age” (or “ma-
turity”) typically quantified by a state variable of time
dimension φ [8, 13–16], an idea that dates back at least
to Rabinowicz [17]. The frictional stress (resistance) τ
is proportional to Ar(φ) [18]. The proportionality factor
depends on the slip velocity v and possibly on a set of
internal state variables which we schematically denote by

θ, and can be interpreted as the shear strength σs(θ, v)
(related to the plastic flow of contact asperities) [8, 18].
This contribution to the frictional resistance is rheolog-
ical in nature. Putting the two together, one can write
the frictional stress (resistance) as [8, 18]

τ(φ, θ, v) =
Ar(φ)σs(θ, v)

An
. (1)

During steady-state sliding at a velocity v, the internal
state variables attain unique values φ(v) and θ(v). There-
fore, under steady-state conditions the frictional stress
τss(v) takes the form

τss(v) =
Ar[φ(v)]σs[θ(v), v]

An
. (2)

In this note we focus on the variation of τss(v) with v,
and in particular on the sign of ∂vτ

ss, its dependence on
v and its functional form. ∂vτ

ss < 0, i.e. SVW friction,
is known to facilitate unstable accelerating slip and fric-
tional instabilities [2, 14]. On the other hand, ∂vτ

ss>0,
i.e. SVS friction, might promote stable slip, limit the
propagation speed of interfacial rupture fronts and affect
the magnitude of slip events [19–25], limit the seismo-
genic zone [26] and affect earthquake afterslip and stress
drops [27]. In what follows we suggest that SVS fric-
tion, ∂vτ

ss > 0, generically emerges in dry friction over
some range of slip velocities, discuss its possible physi-
cal origins and the available experimental evidence for its
existence.

II. REAL CONTACT AREA AGING AND ITS
SATURATION DURING SLIDING

Equation (2) suggests that the steady-state frictional
stress τss(v) is a product of a steady-state real contact
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of area contribution Ass
r (v)≡Ar[φ(v)] and a rheological

contribution σss
s (v)≡σs[θ(v), v]. As the latter is assumed

to be an increasing function of v, ∂vσ
ss
s > 0 (to be dis-

cussed later), we focus first on Ass
r (v).

The physical argument we present has already ap-
peared in the work of Baumberger, Caroli and coworkers
[8, 28, 29] and in Bar-Sinai et al. [23]. It is repeated here
briefly for completeness. The starting point is the non-
steady behavior of Ar(φ) in the absence of slip, v=0. In
this case, φ grows linearly with the time t elapsed since
the frictional interface was formed (when the bodies un-
der consideration brought into frictional contact) or since
previous slip halted, φ= t.

It is well-established that under these conditions the
real contact area undergoes logarithmic aging, i.e. Ar(t)
increases logarithmically, a behavior observed in many
materials [3, 8, 13–15, 30–33]. Specifically, the time evo-
lution of Ar(t) was observed to take the form

Ar(t)∝1 + b log(t/φ∗) , (3)

where b and φ∗ are constants [13, 14] (The proportion-
ality factor is linear in the normal stress σn). This ex-
pression, however, cannot be valid for arbitrarily short
times as it becomes singular for t→0, which is of course
unphysical. This simply means that Ar(t) actually takes
the form

Ar(t)∝1 + b log(1 + t/φ∗) . (4)

where φ∗ can be interpreted as a typical cutoff time scale
for the onset of logarithmic aging. Equation (3) provides
a good approximation for Eq. (4) when t � φ∗, but
completely fails in the opposite limit, t � φ∗. These
features were verified experimentally [32–34].

While this might appear as a somewhat academic dis-
cussion of a short time regularization of the logarithmic
aging formula, and indeed it is almost always overlooked,
this is not the case. To see the relevance of this short time
regularization for our purposes here, we should consider
steady sliding at a velocity v. Since φ quantifies the age
of the real contact it must be a decreasing function of v
(the “lifetime” of a contact asperity is shorter the higher
the slip velocity, i.e. “rejuvenation”). It is well estab-
lished that under steady-state conditions [8, 13, 28]

φ = D/v , (5)

where D is a typical slip distance (usually related to the
contact asperities size) [3, 8]. Therefore, under steady-
state sliding conditions the real contact area takes the
form

Ass
r (v)∝1 + b log

(
1 +

D

vφ∗

)
. (6)

This implies that Ass
r (v) decreases logarithmically with

increasing v for v . D/φ∗ and that it approaches a
constant (saturates) for v � D/φ∗. Therefore, if in-
deed the rheological contribution to the steady-state fric-
tional resistance increases with v, ∂vσ

ss
s >0, we conclude

that irrespective of the precise form of σss
s (v) we expect

∂vτ
ss > 0 for v�D/φ∗. This is an important observa-

tion.

III. LOGARITHMIC STEADY-STATE
VELOCITY-STRENGTHENING FRICTION

The last section concluded with the observation that
the steady-state frictional stress (resistance) τss(v) is ex-
pected to become velocity-strengthening above a certain
slip velocity ∼D/φ∗ due to the saturation of the real con-
tact area, assuming ∂vσ

ss
s > 0. Our goal in this section,

and the subsequent one, is to discuss the latter.
The standard approach to the velocity dependence

of the rheological part of the frictional stress (“shear
strength”) is to attribute it to thermal activation [8, 16,
28]. We briefly repeat the argument here as it sets the
stage for what will follow. The starting point is to treat
the real contact of area Ar(φ) as fixed, to neglect any
rheological internal variables θ and to assume that v is a
result of a stress-biased thermally activated process such
that

v = v0

(
exp

[
−∆(τ)

kBT

]
− exp

[
−∆(−τ)

kBT

])
. (7)

Here v0 is a reference velocity scale related to a basic at-
tempt rate and an intrinsic length scale, ∆(τ) is a stress-
biased activation barrier, kB is Boltzman’s constant and
T is the temperature. The second exponential appears
in order to account for backwards transitions (implying
a proper τ → −τ symmetry and consistency with the
second law of thermodynamics).

The stress-biased activation barrier is assumed to take
the form

∆(τ) = E0 − Ω τ loc(τ) , (8)

where E0 is the bare energy barrier, Ω is the activation
volume (typically much larger than atomic volumes, i.e.
corresponding to a collective multi-atom process [8, 16])
and τ loc(τ) = Anτ/Ar is the local stress at the asperity
level. Note that the local asperity stress τ loc is signif-
icantly enhanced compared to the macroscopic stress τ
by a large factor An/Ar� 1. Therefore, we can rewrite
Eq. (7) as

v = 2 v0 exp

[
− E0

kBT

]
sinh

(
AnΩ τ

ArkBT

)
, (9)

which can be inverted in favor of the stress to read
(putting back the φ dependence of Ar)

τ(φ, v) =
kBTAr(φ)

ΩAn
sinh−1

(
v

2 v0
exp

[
E0

kBT

])
. (10)

Finally, since E0 is typically much larger than kBT ,
we can treat the argument of the inverse sinh-function as
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large for all v’s of interest and approximate sinh−1(x)'
log(2x), yielding

τ(φ, v) =
Ar(φ)

An

[
E0

Ω
+
kBT

Ω
log

(
v

v0

)]
. (11)

The frictional stress in Eq. (11) takes the form as-
sumed in Eq. (1) and σs(v) can be readily identified.
Equation (11) predicts that the instantaneous response
(i.e. faster than the typical evolution time of φ) of the
frictional stress to slip velocity “jumps” would be loga-
rithmic in the ratio between the final and the initial v’s.
This logarithmic “direct effect” [3, 8] has been observed
for many materials in a wide range of slip velocities v,
but typically not larger than a few hundreds of µm/sec.

What are the implications of Eq. (11) for the steady-
state frictional stress τss(v)? To answer this question one
should substitute Ass

r (v) of Eq. (6) for Ar(φ) in Eq. (11).
For v�D/φ∗, the v-dependence of τss(v) is logarithmic
(neglecting log2(v) terms) with a pre-factor whose sign
depends on the relative magnitude of b and kBT/E0. In
particular, for b>kBT/E0 friction is velocity-weakening
and for b < kBT/E0 friction is velocity-strengthening in
this range of slip velocities. In the former case, steady-
state friction is velocity-weakening for v � D/φ∗ and
then it crosses over to velocity-strengthening behavior for
v�D/φ∗, whenAr(φ) approaches a constant. Therefore,
the most important implication of Eqs. (6) and (11) for
our purposes here is that they predict that steady-state
friction is logarithmically velocity-strengthening for v�
D/φ∗. This is often overlooked in the literature, but see
Baumberger and Caroli [8], Bureau et al. [29].

In Fig. 1a-b we present examples from the available
literature in which logarithmic SVW friction crosses over
to logarithmic SVS behavior at some slip velocity vm
(where the curve reaches a minimum). The data in Fig.
1c also exhibit logarithmic SVS.

IV. STRONGER-THAN-LOGARITHMIC
STEADY-STATE FRICTION

As discussed above, a simple thermal activation model
predicts the existence of logarithmic SVS friction above
a slip velocity ∼D/φ∗. This model assumes a single ac-
tivation barrier and a single attempt rate; many of the
materials of interest, however, are disordered and hence a
distribution of activation barriers and time scales might
be relevant. Moreover, the linear dependence of the acti-
vation barrier on τ in Eq. (8) might not be always valid.
In spite of these simplifications and possible limitations,
we adopt this framework and ask whether the logarith-
mic velocity-strengthening behavior might break down at
some point.

Obviously, the simple thermal activation process
breaks down when the stress-biased barrier in Eq. (8)
becomes comparable to kBT . Alternatively, the break-
down occurs when the slip velocity v is not much smaller

than v0 in Eq. (7). There is, however, no easy way to in-
dependently estimate both v0 and E0, which are coupled
in Eq. (11). Moreover, as E0 appears in the exponen-
tial, small variations in it can be compensated by a huge
variation in v0, which suggests a large uncertainty in the
latter. Nevertheless, some arguments for independently
estimating v0 have appeared in the literature. For ex-
ample, Rice et al. [16] estimated v0 for rocks (quartzite
and granite) to be in the mm/sec range, which sets an
upper bound for the validity of the thermal activation
process and hence for logarithmic velocity-strengthening
(assuming, for the moment, that v0>D/φ

∗).

What happens for larger slip velocities, v & v0, when
thermal activation breaks down? While we suspect that
the answer might be material-specific, we believe that
rather generically steady-state friction remains velocity-
strengthening in this regime (at least until thermal weak-
ening possibly intervenes, see Section VI), with a func-
tional dependence which is typically stronger than log-
arithmic. Our basic argument is that the breakdown of
the thermal activation process should also signal a change
in the dominant energy dissipation mechanism associ-
ated with frictional dynamics. Since logarithmic velocity-
strengthening is usually intimately linked to thermal ac-
tivation, we see no reason for other dissipative processes
to give rise to such a weak (i.e. logarithmic) dependence
on v and hence expect the dependence to be stronger
than logarithmic.

While we do not aim here at developing a detailed
model of the crossover to stronger-than-logarithmic
steady-state friction, we would like to sketch a few pos-
sible physical scenarios that might give rise to such a
behavior. We first consider the possibility that loga-
rithmic SVS friction crosses over to a linear behavior in
which τss ∝ v (see, for example, Fig. 1g and Fig. 15
in Baumberger and Berthoud [28]). This viscous-friction
behavior might emerge as a standard viscous process ob-
tained through linearization of a different thermally ac-
tivated process, characterized by an activation volume
significantly smaller than Ω. That is, if at high slip ve-
locities (hence higher stresses) the physics of frictional
dissipation changes such that the activation volume Ω
decreases from a multi-atom/super-molecular value to
an atomic/molecular volume, the thermal activation for-
mula of Eq. (10) remains valid, but now Ωτ loc� kBT
(recall that τ loc =Anτ/Ar) and linearization leading to
τ∝v is sensible [35].

Another mechanism that may lead a crossover to a lin-
ear viscous behavior is well-known in the context of dis-
location mechanics [36]. In this case, at relatively small
mean dislocation velocities and applied stresses, dislo-
cation motion is thermally activated with the barriers
determined by local obstacles of various types and the
Peierls lattice potential. At higher velocities and stresses,
interactions with phonons and electrons control disloca-
tion motion, leading to a linear drag-like relation between
the stress and the velocity [37, 38]

A crossover from a thermally activated regime at
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low slip velocities to a non-thermally activated regime
at higher slip velocities has been briefly discussed in
Baumberger and Caroli [8]. The idea there was that
plastic rearrangements at contact asperities give rise
to mesoscopic stress fields that perturb nearby regions.
The accumulated effect of these random spatiotempo-
ral perturbations, originating from various plastic re-
arrangements taking place at different locations and
times, can be regarded as a dynamical/mechanical noise,
which acts in parallel to the ordinary thermal noise.
This dynamical/mechanical noise becomes more intense
as v increases and eventually takes over the thermal
noise. While the precise functional form of the velocity-
strengthening frictional response associated with the dy-
namical/mechanical noise-controlled regime has not been
discussed, it was implied that it is stronger than the log-
arithmic dependence associated with the thermal noise-
controlled regime (cf. Fig. 17 in Baumberger and Caroli
[8]).

Another physical scenario for the velocity-
strengthening frictional response in the non-thermally
activated regime might be based on applying Bagnold’s
scaling arguments, originally developed in the context
of dense granular flows [39], to atomic/molecular sys-
tems [40]. The idea is that when thermal activation
is irrelevant, the system has no characteristic energy
scale and flow rates are controlled by collisions between
hard-core-like objects, where the detailed molecular
interactions are not playing a central role. In this case,
the frictional stress τ is proportional to the product of
the momentum transfer per collision and the rate of
collisions, both linear in v, leading to τ ∝ v2. While
the application of Bagnold’s scaling arguments to
atomic/molecular systems might be questionable, our
goal here is just to highlight another known mechanism
for a velocity-strengthening type of response.

In strictly athermal frictional interfaces, e.g. frictional
interfaces composed of granular materials such as fault
gouge, where the elementary units are macroscopic and
no thermal motion takes place, we do not expect loga-
rithmic velocity-strengthening to emerge. In this case,
one might expect logarithmic velocity-weakening friction
at small slip velocities, due to logarithmic aging of the
contacts between grains, to cross over to a stronger-
than-logarithmic velocity-strengthening friction associ-
ated with nonlinear plastic rheology. This is precisely
what has been observed and discussed very recently in
Kuwano et al. [41] (see also Fig. 1h).

This qualitative discussion of possible physical mech-
anisms that might give rise to stronger-than-logarithmic
velocity-strengthening friction when thermal activation
breaks down is only meant to show that such mecha-
nisms are conceivable. The generic picture that emerges
is that in thermal systems, when v0 is sufficiently larger
than D/φ∗ and b > kBT/E0, we expect logarithmic
SVW friction to cross over to logarithmic SVS friction
at slip velocities v & D/φ∗, which in turn crosses over
to stronger-than-logarithmic velocity-strengthening fric-

tion at slip velocities v & v0. When v0 < D/φ∗, we ex-
pect logarithmic SVS friction to cross over to stronger-
than-logarithmic velocity-strengthening friction, not due
to the saturation of the real contact area, but rather be-
cause stronger-than-logarithmic strengthening takes over
logarithmic weakening. This is also the case for strictly
athermal frictional interfaces.

To conclude this section, we note that while the dis-
cussion above – starting with Eq. (1) – has focussed pri-
marily on frictional interfaces whose contact asperities
deform plastically, a similar picture has been discussed
by Byerlee in the context of frictional interfaces com-
posed of geological materials governed by brittle fracture
of asperities [42]. Moreover, we would like to draw the
readers’ attention to the work of Estrin and Bréchet [43],
who seem to discuss somewhat related ideas. Finally, it is
important to mention that in the context of lubrication,
i.e. frictional interfaces that contain fluids, the generic
steady-state dry friction curve τss(v) discussed here is
the standard known as the “Stribeck curve” [4, 44]. In
this curve, solid contact dominates at small slip velocities
and hydrodynamic viscous friction dominates at high slip
velocities, with a mixed regime in between, where friction
goes through a minimum.

V. EXPERIMENTAL EVIDENCE

To test the physical picture described above, we have
searched the available literature, looking for steady-state
friction experiments that go up to sufficiently high slip
velocities. While these experiments are not easy to per-
form, and sometimes require to employ different experi-
mental techniques in different ranges of slip velocities, we
have been able to trace quite a few examples that lend
support to the proposed picture. All of the panels of Fig.
1, which span a rather wide range of materials, clearly ex-
hibit SVS. Here we provide additional information about
the data presented in the figure:

(a) τss(v) for a pre-cut fault in halite in a triaxial ap-
paratus, data extracted from Fig. 3 of Shimamoto
[45]. The lower panel corresponds to a normal stress
of σn =50MPa and the upper one to σn =100MPa. A
crossover from logarithmic SVW (marked by a neg-
ative slope green dashed line) to logarithmic SVS
(marked by a positive slope red dotted line) is ob-
served. At yet higher normal stresses no SVW is
observed (not shown).

(b) µss(v) ≡ τss(v)/σn for an interface between rough
PMMA (a glassy polymer) and smooth silanized
glass, data extracted from Fig. 7 of Bureau et al.
[29]. A clear crossover from logarithmic SVW to log-
arithmic SVS is observed. Note that the smoothness
of the substrate (a rigid silanized glass) implies that
contact asperities are not continuously formed and
destroyed during sliding, and hence that a different
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FIG. 1. Experimental observations of steady-state velocity-strengthening friction in various materials. In each
panel the region corresponding to velocity-weakening friction (light blue background) is separated by a vertical dashed line
from the subsequent region corresponding to velocity-strengthening friction (light purple background). Green dashed lines
mark logarithmic SVW, while red dotted lines mark logarithmic SVS. The figure is described in detail in Section V.
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mechanism for the crossover (as compared to the one
discussed in the text) is involved.

(c) µss(v) for clay-rich gouge, data extracted from Fig.
10 of Ferri et al. [46]. The curve shows weak,
quasi-logarithmic, SVW at low velocities, followed
by a quasi-logarithmic SVS and then a crossover
to stronger-than-logarithmic velocity-strengthening.
Eventually, a sharp decrease in friction is observed
at high velocities.

(d) ∂µss/∂ log v for calcite (upper panel) and dolomite
(lower panel), both data sets extracted from Fig.
2 of Weeks [19]. A crossover from SVW to SVS
is observed (∂µss/∂ log v < 0 implies SVW, while
∂µss/∂ log v>0 implies SVS).

(e) The same as panel (d), but for granite. Logarithmic
SVW (marked by a horizontal line) and a crossover
to stronger-than-logarithmic SVS are observed.

(f) µss(v) for aplite (upper panel) and granite (lower
panel). Data courtesy of Di Toro et al. [47]. A
crossover from SVW to SVS is observed in both data
sets.

(g) µss(v) for Bristol paper, data extracted from Fig. 4
of Heslot et al. [48]. The curve shows logarithmic
SVW at low velocities and a crossover to stronger-
than-logarithmic SVS at higher velocities. The inset
(linear v-axis) shows that µss∝v in the SVS regime.

(h) µss(v) for a granular material composed of glass
beads under a very low normal stress of σn =30KPa,
data extracted from Fig. 2 of Kuwano et al. [41]. A
clear crossover from logarithmic SVW to a stronger-
than-logarithmic SVS is observed. The inset (linear
v-axis) shows that µss∝v in the SVS regime.

(i) µss(v) for Sierra White granite in a rotary apparatus,
data extracted from Fig. 1 of Reches and Lockner
[49]. The two curves correspond to two data sets
that were selected out of many sets that appeared
in the original figure. The lower curve exhibits
logarithmic SVW at low velocities, a crossover to
stronger-than-logarithmic SVS at higher velocities
and eventually SVW at very high slip velocities.
The upper curve exhibits a crossover from SVW to
stronger-than-logarithmic SVS.

Some other works report on SVS and its variability
with various control parameters such as the normal stress
σn. For example, Marone et al. [50] has observed SVS
in experiments of simulated fault gouge. The magnitude
of SVS varied inversely with the normal stress σn and
directly with the gouge thickness and surface roughness.
In this case, SVS has been associated with granular di-
latancy within the gouge layer. In Kilgore et al. [51],
experiments on bare ground surfaces of Westerly gran-
ite have demonstrated a crossover from SVW to SVS at

vm ' 10µm/s for a normal stress of σn = 5MPa. For
higher normal stresses, up to 150MPa, SVS has not been
observed in the range of measured slip velocities (up to
103µm/s). It is not entirely clear whether SVS did not ex-
ist under these conditions or was simply shifted to higher
slip velocities.

All in all, we believe that these diverse experimental
data sets imply that the physical picture depicted above
should be seriously considered.

VI. SUMMARY AND DISCUSSION

In this brief note we argued that a steady-state
velocity-strengthening behavior might be a generic fea-
ture of dry friction over some range of slip velocities.
We stressed that the emergence of velocity-strengthening
is a natural consequence of an experimentally well-
established phenomenological picture of dry friction at
relatively low slip velocities. In this picture, logarith-
mic velocity-weakening friction (dominated by the “re-
juvenation” of contact asperities) crosses over to log-
arithmic velocity-strengthening friction (dominated by
thermally-activated rheology) at a typical slip velocity
∼ D/φ∗ where the real contact area saturates. We
further suggested that logarithmic steady-state velocity-
strengthening friction should cross over to a stronger-
than-logarithmic velocity-strengthening behavior at a
slip velocity v0, typically accompanied by a change in
the dominant frictional dissipation mechanism.

The above discussed scenario is expected to hold if
D/φ∗ < v0. However, as D/φ∗ and v0 correspond to
different pieces of physics, one cannot exclude the possi-
bility that v0 < D/φ∗. In this case we expect logarith-
mic velocity-weakening friction to cross over to stronger-
than-logarithmic velocity-strengthening friction at ∼ v0.
Some examples in Fig. 1 seem to support this possibility.
Moreover, this behavior is expected to be the generic case
in athermal systems (e.g. granular materials), where no
thermally-activated rheology is relevant (cf. Fig. 1h).

We complied a rather large number of experi-
mental data sets available in the literature, directly
demonstrating the existence of steady-state velocity-
strengthening friction (both logarithmic and stronger-
than-logarithmic). These examples cover a rather wide
range of materials, including various rocks (e.g. gran-
ite and halite), a glassy polymer (PMMA) – widely used
in laboratory experiments – on smooth silanized glass, a
granular material (glass beads), clay-rich gouge and Bris-
tol board. We suspect that this behavior is robust and
will be observed in many other materials as long as care-
ful steady-state friction experiments cover a sufficiently
large range of slip velocities.

We should mention two other aspects of steady-state
friction that were not discussed above, but are observed
in some of the data sets presented in Fig. 1. First,
at extremely small slip velocities one expects friction
to be velocity-strengthening due to creep-like response
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[43]. This is clearly observed in panel a. At very large
slip velocities thermal weakening effects might be oper-
ative, leading to significant (sometimes overwhelming)
velocity-weakening friction [52–54]. This is clearly ob-
served in panels c and i. Combining these features with
the previously discussed ones, an M-like friction curve
emerges. This will be discussed elsewhere as our fo-
cus here is on the crossover from velocity-weakening to
velocity-strengthening friction.

The existence of velocity-strengthening friction might
have serious implications for various frictional phenom-
ena. While these have not been studied extensively in
the literature up to now, we would like to mention here
the effect of velocity-strengthening friction on the seis-
mogenic zone [26], its effect on earthquake afterslip and
negative stress drops [27], the role played by velocity-
strengthening friction in stabilizing homogeneous sliding

between dissimilar materials [16], in facilitating slow slip
events [19–25] and in giving rise to steady-state interfa-
cial rupture fronts under stress-controlled boundary con-
ditions [23]. Further research in this direction is called
for.
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